COMPLETE
EXPERIENCIE
SOLUTION

Web Integration

Classic Flow

KYC Ecuador Flow

KYC Ecuador + Document Capture Flow

KYC Ecuador StartCompareFaces

KYC Service Overview and Integration

KYC Transaction Flow

Web Integration

In today's digital age, ensuring the authenticity of user identities is paramount for online platforms,
especially for services requiring a high level of security and trust. The Full Experience Integration
offers a comprehensive solution by seamlessly incorporating identity validation processes directly
into your web application. This guide introduces the concept of redirecting users to a dedicated
web page for either ENROLL or VERIFY flows, providing a complete, secure, and user-friendly
experience for identity verification.

Why Full Experience Integration?

Integrating the Full Experience for identity validation directly into your web application has several
key benefits:

e Enhanced Security: By utilizing advanced biometric verification and document
authentication, you significantly reduce the risk of identity fraud and enhance the overall
security of your platform.

o Improved User Experience: Users appreciate a seamless and efficient process for
identity verification. Redirecting to a dedicated web page simplifies the user journey,
making it straightforward and hassle-free.

e Flexibility and Ease of Integration: Whether through GET or POST methods,
redirecting users to a web page for identity verification offers flexibility in integration,
allowing you to maintain the look and feel of your application while leveraging robust
verification processes.

e Scalability: As your platform grows, the need for a reliable and scalable identity
verification solution becomes crucial. The Full Experience Integration is designed to scale
with your needs, ensuring consistent performance and reliability.

The ENROLL and VERIFY Flows

The Full Experience Integration encompasses two primary flows:

e ENROLL Flow: A comprehensive identity validation process that includes liveness
detection, document scanning and authentication, OCR for data extraction, biometric
extraction and comparison, and secure data association and storage. This flow establishes
a verified biometric profile linked to the user's identity document.

e VERIFY Flow: A streamlined process that verifies an individual's identity by comparing
live biometric data against the previously created biometric profile during the ENROLL
process. This flow ensures that the person accessing the service is the same individual
who initially enrolled.

Implementing the Integration

Integrating these flows into your web application involves redirecting users to a specific URL for
either the ENROLL or VERIFY process. This redirection can be achieved using GET or POST methods,
depending on your application's requirements and the specific parameters of the identity
verification process. The URL includes all necessary parameters to initiate the verification process,
such as API keys, project names, product numbers, and any additional custom parameters required
for the transaction.

This guide aims to provide you with the knowledge and tools needed to implement the Full
Experience Integration for identity verification within your web application. By following the
outlined steps and understanding the importance of each flow, you can enhance the security and
user experience of your platform, ensuring a trustworthy and efficient identity verification process.

Classic Flow

Integrating the Full Experience for identity verification into your web application involves
redirecting users to a dedicated web page where they can complete the ENROLL or VERIFY process.
This tutorial will guide you through the steps to implement these flows, ensuring a seamless
integration that enhances user experience and security.

Requirements and Compatibility

Before you begin, ensure you have the following:

e Access to the base URL for the identity verification service.

e An API key and project name provided by the service provider.

e Knowledge of the product number associated with the service you intend to use.
e Familiarity with GET and POST HTTP methods.

Preparing the Redirection URLs

Based on the flow you wish to implement (ENROLL or VERIFY), prepare the URL to which users will
be redirected. The URL structure differs slightly between the two flows:

ENROLL

GET Method: Construct the URL with all required parameters appended as query strings.

4 https://your-base-url/validar-
persona?callback=YOUR_CALLBACK URL&key=YOUR_API_KEY&projectName=YO
UR PROJECT NAME&product=YOUR_PRODUCT NUMBER&Parameters=YOUR CU
STOM_PARAMETERS&riskld=YOUR_RISK_ID

POST Method: If using POST, you'll need to set up a form or a web request in your application that
submits to the URL https://your-base-url/validar-persona/ with the parameters included in the body of
the request.

44 <form action="https://your-base-url/validar-persona/" method="post"
target="_blank">
<input type="hidden" name="callback" value="YOUR_CALLBACK_ URL" />

https://your-base-url/validar-persona?callback=YOUR_CALLBACK_URL&key=YOUR_API_KEY&projectName=YOUR_PROJECT_NAME&product=YOUR_PRODUCT_NUMBER&Parameters=YOUR_CUSTOM_PARAMETERS&riskId=YOUR_RISK_ID
https://your-base-url/validar-persona?callback=YOUR_CALLBACK_URL&key=YOUR_API_KEY&projectName=YOUR_PROJECT_NAME&product=YOUR_PRODUCT_NUMBER&Parameters=YOUR_CUSTOM_PARAMETERS&riskId=YOUR_RISK_ID
https://your-base-url/validar-persona?callback=YOUR_CALLBACK_URL&key=YOUR_API_KEY&projectName=YOUR_PROJECT_NAME&product=YOUR_PRODUCT_NUMBER&Parameters=YOUR_CUSTOM_PARAMETERS&riskId=YOUR_RISK_ID
https://your-base-url/validar-persona?callback=YOUR_CALLBACK_URL&key=YOUR_API_KEY&projectName=YOUR_PROJECT_NAME&product=YOUR_PRODUCT_NUMBER&Parameters=YOUR_CUSTOM_PARAMETERS&riskId=YOUR_RISK_ID

<input type="hidden" name="key" value="YOUR_API KEY" />

<input type="hidden" name="projectName" value="YOUR_PROJECT_NAME"
/>

<input type="hidden" name="product" value="YOUR_PRODUCT_NUMBER" />

<input type="hidden" name="Parameters"
value='YOUR_CUSTOM_PARAMETERS' />

<input type="hidden" name="riskld" value="YOUR_RISK ID" />

<button type="submit">Start ENROLL Process</button>
</form>

Replace placeholders like YOUR_CALLBACK URL, YOUR _API_KEY , etc., with actual values provided by
the identity verification service. The Parameters field should contain a JSON string with any
additional information you wish to pass.

VERIFY

GET Method: Similar to ENROLL, but with parameters suited for verification.

4 https://your-base-url/verificar-
persona?callback=YOUR_CALLBACK URL&key=YOUR_API_KEY&projectName=YO
UR _PROJECT NAME&documentType=DOCUMENT TYPE&identificationNumber=l
DENTIFICATION_NUMBER&product=YOUR_PRODUCT _NUMBER&riskld=YOUR_RIS
K ID

POST Method: Submit to https://your-base-url/verificar-persona/ with verification parameters in the
request body.

44 <form action="https://your-base-url/verificar-persona/" method="post"
target="_blank">
<input type="hidden" name="callback" value="YOUR_CALLBACK_ URL" />
<input type="hidden" name="key" value="YOUR_API KEY" />
<input type="hidden" name="projectName" value="YOUR_PROJECT_NAME"
/>
<input type="hidden" name="documentType" value="DOCUMENT _TYPE" />
<input type="hidden" name="identificationNumber"
value="IDENTIFICATION_NUMBER" />
<input type="hidden" name="product" value="YOUR_PRODUCT NUMBER" />
<input type="hidden" name="riskld" value="YOUR_RISK ID" />
<input type="hidden" name="searchOneToMany" value="true_or_false" />

https://your-base-url/verificar-persona?callback=YOUR_CALLBACK_URL&key=YOUR_API_KEY&projectName=YOUR_PROJECT_NAME&documentType=DOCUMENT_TYPE&identificationNumber=IDENTIFICATION_NUMBER&product=YOUR_PRODUCT_NUMBER&riskId=YOUR_RISK_ID
https://your-base-url/verificar-persona?callback=YOUR_CALLBACK_URL&key=YOUR_API_KEY&projectName=YOUR_PROJECT_NAME&documentType=DOCUMENT_TYPE&identificationNumber=IDENTIFICATION_NUMBER&product=YOUR_PRODUCT_NUMBER&riskId=YOUR_RISK_ID
https://your-base-url/verificar-persona?callback=YOUR_CALLBACK_URL&key=YOUR_API_KEY&projectName=YOUR_PROJECT_NAME&documentType=DOCUMENT_TYPE&identificationNumber=IDENTIFICATION_NUMBER&product=YOUR_PRODUCT_NUMBER&riskId=YOUR_RISK_ID
https://your-base-url/verificar-persona?callback=YOUR_CALLBACK_URL&key=YOUR_API_KEY&projectName=YOUR_PROJECT_NAME&documentType=DOCUMENT_TYPE&identificationNumber=IDENTIFICATION_NUMBER&product=YOUR_PRODUCT_NUMBER&riskId=YOUR_RISK_ID
https://your-base-url/verificar-persona?callback=YOUR_CALLBACK_URL&key=YOUR_API_KEY&projectName=YOUR_PROJECT_NAME&documentType=DOCUMENT_TYPE&identificationNumber=IDENTIFICATION_NUMBER&product=YOUR_PRODUCT_NUMBER&riskId=YOUR_RISK_ID

<input type="hidden" name="getGeolocationOption"
value="GEOLOCATION_OPTION" />
<input type="hidden" name="hideTips" value="true_or false" />
<button type="submit">Start VERIFY Process</button>
</form>

Again, ensure that you replace placeholders with actual values relevant to your project and the
identity verification service. The searchOneToMany , getGeolocationOption , and hideTips fields are
optional and should be included based on your specific requirements.

Redirecting Users

Implement the logic in your web application to redirect users to the prepared URL when they need
to complete the ENROLL or VERIFY process. This can be a direct link, a button click event, or an
automatic redirection based on application logic.

Handling the Callback

The callback parameter in the URL is crucial as it defines where the user is redirected after
completing the verification process. Ensure your application is prepared to handle this callback
URL:

e Capture query parameters or POST data returned to the callback URL.
e Process the verification results according to your application's logic (e.g., updating user
status, displaying a success message).

Additional Tips

e Custom Parameters: Utilize the Parameters field in the ENROLL flow to pass any
additional information specific to the transaction or user. This field must be in JSON
format.

e Risk Management: The riskild parameter allows you to specify the risk level of the
transaction. Use this to adjust the verification process according to your security needs.

e User Experience: Consider the user journey through the verification process. Provide
clear instructions and support to ensure a smooth experience.

By following these steps, you can successfully integrate the Full Experience for identity verification
into your web application, enhancing security and user trust in your platform.

https://docs.ado-tech.com/books/b-trust/page/service-documentation-get-risk-classification

KYC Ecuador Flow

Integration Guide for ldentity
Validation Flow for Ecuador

This guide offers a detailed approach to integrating a specialized identity validation flow tailored
for Ecuadorian users. This process stands out by authenticating users through real-time validation
of their facial features, comparing them against the official data provided by the Civilian Registry of
Ecuador. By adhering to a proven framework used in classic verification flows, this integration is
adapted to meet the unique requirements of users from Ecuador, ensuring a secure and efficient
verification process.

Overview

The identity validation flow for Ecuador leverages advanced facial recognition technology to
compare a user's live-captured photograph against identity data from the Civilian Registry of
Ecuador. This comparison ensures that the person attempting to verify their identity matches the
official records, thereby enhancing security and trust in digital platforms.

Key Steps for Integration

1. User Consent and Instruction: Begin by informing users about the process and
obtaining their consent. Clearly explain the need for a facial photograph and how it will be
used for verification purposes. Ensure users understand the importance of clear lighting
and a neutral background for the photograph.

2. Capture and Submission: Implement a user-friendly interface that guides users through
the photograph capture process. This interface should include real-time feedback to help
users position their face correctly within the designated area. Once the photograph is
captured, it, along with any necessary identification information (e.g., unique
identification number), is submitted for verification.

3. Real-Time Verification: Upon submission, the system processes the photograph and
identification information, comparing them against the data provided by the Civilian
Registry of Ecuador. This step utilizes facial recognition algorithms to ensure a match
between the live-captured photograph and the official records.

4. Verification Outcome: The result of the verification process is communicated back to
the user and the platform in real-time. A successful verification confirms the user's
identity matches the official records, while any discrepancies are flagged for further
review.

Implementation Considerations

e Privacy and Data Protection: Ensure the process complies with local and international
data protection regulations. User data, especially biometric information, should be
handled with the utmost care, ensuring privacy and security.

e User Experience: Design the verification process to be as intuitive and straightforward
as possible. Minimize user effort and provide clear instructions and feedback throughout
the process.

e Technical Integration: Depending on your platform's architecture, choose the
appropriate method (GET or POST) for submitting the verification request. Ensure your
system is capable of handling the response, whether it's a direct callback or a JSON object
containing the verification outcome.

e Testing and Quality Assurance: Before launching the integration, conduct thorough
testing to ensure accuracy in the verification process and a smooth user experience.
Consider various user scenarios and edge cases to refine the process.

By following this guide, you can integrate a robust and efficient identity validation flow into your
platform, specifically designed for Ecuadorian users. This process not only enhances security by
leveraging real-time data from the Civilian Registry of Ecuador but also offers a seamless and user-
friendly experience, building trust and confidence among your user base.

Step 1: Preparing for Integration

Before initiating the integration process, ensure you have the following:
e Access to the base URL for the identity verification service.
e An API key and project name provided by the service provider.

e Understanding of the specific parameters required for the Ecuadorian identity validation
flow.

Step 2: Constructing the Request

The identity validation process can be initiated using either GET or POST methods, depending on
your application's architecture and preferences.

For the GET Method:

Construct a URL with the required parameters appended as query strings. The basic structure is as
follows:

44 URL _Base/validar-rostro-
persona?callback=URL_CALLBACK&key=API KEY&projectName=PROJECT NAME
&product=PRODUCT&Parameters=PARAMETERS&riskld=RISK_ID

For the POST Method:

If you prefer using POST, your application will need to send a request to URL Base/validar-rostro-
persona/ with the parameters included in the body of the request.

Parameters:

callback : The URL to which the user will be redirected after the verification process is

completed.

key : The API key assigned to your project.

projectName : The name of your project.

product : The product number for the transaction.

e Parameters : Additional custom parameters in JSON format, associated with the transaction.
This is optional.

e riskld : The transaction's risk level identifier. If not specified, a default level is assumed.

Step 3: Handling the User Experience

1. User Consent: Inform the user about the minimum conditions required for capturing the
facial photograph with Liveness detection. The browser will request permission to access
the device's camera and location.

2. Capture Process: After granting permission, the user will be prompted to capture their
photograph by clicking on "capturar fotografia". They must keep their face within the on-
screen oval until the internal clock completes.

3. Data Entry: On the Identification Data screen, users must enter their unique
identification number and individual fingerprint code to proceed with the identity
validation by pressing "Continuar".

4. Completion: Upon completion, users will see a summary screen indicating that the
transaction has finished successfully.

Step 4: Receiving the Response

After the user completes the process, your application will receive a JSON object at the specified
callback URL. The JSON structure includes the transaction's outcome and relevant data, such as the

id, codeld , and ThresHoldCompareFaces .

Step 5: Retrieving Transaction Results

The Validation method is a crucial part of the identity verification process, allowing you to retrieve
detailed information about the transaction and the outcome of the validation. This method is
particularly useful for post-verification steps, such as auditing, compliance checks, or further user
verification processes. Below, we detail how to use the Validation method with a curl command,
which is designed to fetch the results of a specific transaction using a GET request.

Overview

To retrieve the results of an identity verification transaction, you will need the codeld that was
provided in the callback after the verification process. This codeld serves as a unique identifier for
the transaction, enabling you to query the verification results.

CURL Command Structure

The curl command to retrieve the transaction results is structured as follows:

a4 curl -X GET
"{URL_Base}/api/{ProjectName}/Validation/{id}?returnimages=false" \
-H "accept: application/json" \
-H "apiKey: your_api_key" \
-H "returnDocuments: true" \
-H "returnVideoLiveness: false"

Parameters Explained

e {URL_Base}: The base URL of the identity verification service. This should be replaced
with the actual URL provided to you.

o {ProjectName}: The name of your project as registered with the identity verification
service. Replace {ProjectName} with your specific project name.

e {id}: The unique identifier (codeld) for the transaction you wish to retrieve. This ID is
typically provided in the callback after the verification process.

e returnlmages (Query Parameter): Specifies whether to include images in the response.
Setting this to false excludes images from the response, while true includes them.

Headers

e accept: Indicates the expected media type of the response, which is application/json for
JSON-formatted data.

e apiKey: Your API key for authentication with the identity verification service. Replace
your_api_key with the actual API key assigned to your project.

e returnDocuments: A header that determines whether document data should be included
in the response. Setting this to true includes document data, while false excludes it.

e returnVideolLiveness: Indicates whether the response should contain video data from
the liveness verification process. true includes video data, and false excludes it.

Usage Tips

e Ensure all placeholders in the curl command are replaced with actual values specific to
your project and the transaction you're querying.

e Execute the curl command in a terminal or command-line interface. The server's
response will include the transaction details and validation results, according to the
parameters you've set.

e Carefully process the JSON response to extract and utilize the verification information as
needed in your application or for compliance purposes.

By following these guidelines and using the corrected URL structure and parameters, you can
effectively retrieve detailed information about identity verification transactions, enhancing your
application's security and user management processes.

KYC Ecuador + Document
Capture Flow

Integration Guide for ldentity
Validation Flow for Ecuador +
Document Capture

This guide outlines the integration of a specialized identity validation flow designed for Ecuadorian
users. This enhanced process is distinguished by its ability to authenticate users in real-time by
capturing their facial features and an image of their identification document. Unlike traditional
verification flows that may compare document information against official records, this streamlined
approach focuses solely on capturing the document's image without validating its data. This
adaptation ensures a secure and efficient verification process, tailored to meet the unique needs of
users from Ecuador, while simplifying the steps involved in identity verification.

Overview

The identity validation flow for Ecuador leverages advanced facial recognition technology to
compare a user's live-captured photograph against identity data from the Civilian Registry of
Ecuador. This comparison ensures that the person attempting to verify their identity matches the
official records, thereby enhancing security and trust in digital platforms.

Key Steps for Integration

1. User Consent and Instruction: Begin by informing users about the process and
obtaining their consent. Clearly explain the need for a facial photograph and how it will be
used for verification purposes. Ensure users understand the importance of clear lighting
and a neutral background for the photograph.

2. Capture and Submission: Implement a user-friendly interface that guides users through
the photograph capture process. This interface should include real-time feedback to help
users position their face correctly within the designated area. Once the photograph is

captured, it, along with any necessary identification information (e.g., unique
identification number), is submitted for verification.

3. Real-Time Verification: Upon submission, the system processes the photograph and
identification information, comparing them against the data provided by the Civilian
Registry of Ecuador. This step utilizes facial recognition algorithms to ensure a match
between the live-captured photograph and the official records.

4. Verification Outcome: The result of the verification process is communicated back to
the user and the platform in real-time. A successful verification confirms the user's
identity matches the official records, while any discrepancies are flagged for further
review.

Implementation Considerations

e Privacy and Data Protection: Ensure the process complies with local and international
data protection regulations. User data, especially biometric information, should be
handled with the utmost care, ensuring privacy and security.

e User Experience: Design the verification process to be as intuitive and straightforward
as possible. Minimize user effort and provide clear instructions and feedback throughout
the process.

e Technical Integration: Depending on your platform's architecture, choose the
appropriate method (GET or POST) for submitting the verification request. Ensure your
system is capable of handling the response, whether it's a direct callback or a JSON object
containing the verification outcome.

e Testing and Quality Assurance: Before launching the integration, conduct thorough
testing to ensure accuracy in the verification process and a smooth user experience.
Consider various user scenarios and edge cases to refine the process.

By following this guide, you can integrate a robust and efficient identity validation flow into your
platform, specifically designed for Ecuadorian users. This process not only enhances security by
leveraging real-time data from the Civilian Registry of Ecuador but also offers a seamless and user-
friendly experience, building trust and confidence among your user base.

Step 1: Preparing for Integration

Before initiating the integration process, ensure you have the following:

e Access to the base URL for the identity verification service.

e An API key and project name provided by the service provider.

e Understanding of the specific parameters required for the Ecuadorian identity validation
flow.

Step 2: Constructing the Request

The identity validation process can be initiated using either GET or POST methods, depending on
your application's architecture and preferences.

For the GET Method:

Construct a URL with the required parameters appended as query strings. The basic structure is as
follows:

44 URL _Base/validar-rostro-documento-
persona?callback=URL _CALLBACK&key=API KEY&projectName=PROJECT NAME
&product=PRODUCT&Parameters=PARAMETERS&riskld=RISK_ID

For the POST Method:

If you prefer using POST, your application will need to send a request to URL Base/validar-rostro-
persona/ with the parameters included in the body of the request.

Parameters:

callback : The URL to which the user will be redirected after the verification process is

completed.

key : The API key assigned to your project.

e projectName : The name of your project.

product : The product number for the transaction.

e Parameters : Additional custom parameters in JSON format, associated with the transaction.
This is optional.

e riskld : The transaction's risk level identifier. If not specified, a default level is assumed.

Step 3: Handling the User Experience

1. User Consent: Inform the user about the minimum conditions required for capturing the
facial photograph with Liveness detection. The browser will request permission to access
the device's camera and location.

2. Capture Process: After granting permission, the user will be prompted to capture their
photograph by clicking on "capturar fotografia". They must keep their face within the on-
screen oval until the internal clock completes.

3. Data Entry: On the Identification Data screen, users must enter their unique
identification number and individual fingerprint code to proceed with the identity
validation by pressing "Continuar".

4. Completion: Upon completion, users will see a summary screen indicating that the
transaction has finished successfully.

Step 4: Receiving the Response

After the user completes the process, your application will receive a JSON object at the specified
callback URL. The JSON structure includes the transaction's outcome and relevant data, such as the
id , codeld , and ThresHoldCompareFaces .

Step 5: Retrieving Transaction Results

The Validation method is a crucial part of the identity verification process, allowing you to retrieve
detailed information about the transaction and the outcome of the validation. This method is
particularly useful for post-verification steps, such as auditing, compliance checks, or further user
verification processes. Below, we detail how to use the Validation method with a curl command,
which is designed to fetch the results of a specific transaction using a GET request.

Overview

To retrieve the results of an identity verification transaction, you will need the codeld that was
provided in the callback after the verification process. This codeld serves as a unique identifier for
the transaction, enabling you to query the verification results.

CURL Command Structure

The curl command to retrieve the transaction results is structured as follows:

a4 curl -X GET
"{URL_Base}/api/{ProjectName}/Validation/{id}?returnimages=false" \
-H "accept: application/json" \
-H "apiKey: your_api_key" \
-H "returnDocuments: true" \
-H "returnVideoLiveness: false"

Parameters Explained

e {URL_Base}: The base URL of the identity verification service. This should be replaced
with the actual URL provided to you.

e {ProjectName}: The name of your project as registered with the identity verification
service. Replace {ProjectName} with your specific project name.

e {id}: The unique identifier (codeld) for the transaction you wish to retrieve. This ID is
typically provided in the callback after the verification process.

e returnlmages (Query Parameter): Specifies whether to include images in the response.
Setting this to false excludes images from the response, while true includes them.

Headers

e accept: Indicates the expected media type of the response, which is application/json for
JSON-formatted data.

o apiKey: Your API key for authentication with the identity verification service. Replace
your_api_key with the actual API key assigned to your project.

e returnDocuments: A header that determines whether document data should be included
in the response. Setting this to true includes document data, while false excludes it.

e returnVideolLiveness: Indicates whether the response should contain video data from
the liveness verification process. true includes video data, and false excludes it.

Usage Tips

e Ensure all placeholders in the curl command are replaced with actual values specific to
your project and the transaction you're querying.

e Execute the curl command in a terminal or command-line interface. The server's
response will include the transaction details and validation results, according to the
parameters you've set.

e Carefully process the JSON response to extract and utilize the verification information as
needed in your application or for compliance purposes.

By following these guidelines and using the corrected URL structure and parameters, you can
effectively retrieve detailed information about identity verification transactions, enhancing your
application's security and user management processes.

Signing Documents

In case require to sign documents with a KYC flow:

Publish Documents

https://docs.ado-tech.com/books/b-trust/page/publish-documents

KYC Ecuador
StartCompareFaces

ldentity Validation Flow Integration
Guide for Ecuador
StarCompareFaces Routine

This guide offers a detailed approach to integrating a specialized identity validation flow tailored
for Ecuadorian users. This process stands out by authenticating users through real-time validation
of their facial features, comparing them against the official data provided by the Civilian Registry of
Ecuador. By adhering to a proven framework used in classic verification flows, this integration is
adapted to meet the unique requirements of users from Ecuador, ensuring a secure and efficient
verification process.

Overview

The identity validation flow for Ecuador leverages advanced facial recognition technology to
compare a user's live-captured photograph against identity data from the Civilian Registry of
Ecuador. This comparison ensures that the person attempting to verify their identity matches the
official records, thereby enhancing security and trust in digital platforms.

Key Steps for Integration

1. User Consent and Instruction: Begin by informing users about the process and
obtaining their consent. Clearly explain the need for a facial photograph and how it will be
used for verification purposes. Ensure users understand the importance of clear lighting
and a neutral background for the photograph.

2. Capture and Submission: Implement a user-friendly interface that guides users through
the photograph capture process. This interface should include real-time feedback to help
users position their face correctly within the designated area. Once the photograph is
captured, it, along with any necessary identification information (e.g., unique

identification number), is submitted for verification.

3. Real-Time Verification: Upon submission, the system processes the photograph and
identification information, comparing them against the data provided by the Civilian
Registry of Ecuador. This step utilizes facial recognition algorithms to ensure a match
between the live-captured photograph and the official records.

4. Verification Outcome: The result of the verification process is communicated back to
the user and the platform in real-time. A successful verification confirms the user's
identity matches the official records, while any discrepancies are flagged for further
review.

Implementation Considerations

e Privacy and Data Protection: Ensure the process complies with local and international
data protection regulations. User data, especially biometric information, should be
handled with the utmost care, ensuring privacy and security.

e User Experience: Design the verification process to be as intuitive and straightforward
as possible. Minimize user effort and provide clear instructions and feedback throughout
the process.

e Technical Integration: Depending on your platform's architecture, choose the
appropriate method (GET or POST) for submitting the verification request. Ensure your
system is capable of handling the response, whether it's a direct callback or a JSON object
containing the verification outcome.

e Testing and Quality Assurance: Before launching the integration, conduct thorough
testing to ensure accuracy in the verification process and a smooth user experience.
Consider various user scenarios and edge cases to refine the process.

By following this guide, you can integrate a robust and efficient identity validation flow into your
platform, specifically designed for Ecuadorian users. This process not only enhances security by
leveraging real-time data from the Civilian Registry of Ecuador but also offers a seamless and user-
friendly experience, building trust and confidence among your user base.

Step 1: Preparing for Integration

Before initiating the integration process, ensure you have the following:

e Access to the base URL for the identity verification service.

e An API key and project name provided by the service provider.

e Understanding of the specific parameters required for the Ecuadorian identity validation
flow.

CURL Command Structure

The curl command to retrieve the transaction results is structured as follows:

For the facial validation of the StarCompare Faces routine, we use the StarCompare Faces service
for creating the UID. This service will request the customer's photograph for validation, extracted
from the Ecuadorian registry, along with data such as fingerprint code, NUIP, Documentype (3 for
Ecuadorian ID), full name, and digital signature photograph in case we are the ones making the call
to the Ecuadorian civil registry. We need that in the request, only the document number and
fingerprint code are provided. If no photo is sent, our system will make a call to the civil registry to
extract this information from the data obtained.

44 curl --location
'"{URL_Base}/api/Ilntegration/{ProjectName}/Validation/StartCompareFaces' \
--header 'apiKey: your_api_key"' \

--header 'projectName: your_project_ name'\

--header 'Content-Type: application/json' \

--data '{
"Productld": your_productid,
"CustomerServicePhoto": base64 photo by ecuador registry,
"SignaturePhoto": base64 photo signature for ecuador registry,
"DactilarCode": customer's fingerprint code,
"IdentificationNumber": customer document number,
"Name": client's full name,
"DocumentType": type of document (3 For Ecuadorian cedula)

}I

Parameters Explained

e {URL_Base}: The base URL of the identity verification service. This should be replaced
with the actual URL provided to you.

o {ProjectName}: The name of your project as registered with the identity verification
service. Replace {ProjectName} with your specific project name.

Code Response Description

200: "UID" JSON formatted object with transaction information.
400: The provided data does not correspond to the expected criteria.
401: Authorization process was unsuccessful. Validate the project code and/or API Key.

404: The specified product code and/or project does not exist.

| 500: An error has occurred, validate the delivered ID number for more details.

Step 2: Constructing the Request

The identity validation process can be initiated by using the GET methods .

For the GET Method:

Construct a URL with the required parameters appended as query strings. The basic structure is as
follows:

44 URL_Base/compare-faces?callback=https://www.google.com/&uid=UID

Parameters:

e callback : The URL to which the user will be redirected after the verification process is
completed.

e uid : unique identifier, assigned to each user for facial validation of the transaction
created to be validated.

Step 3: Handling the User Experience

1. User Consent: Inform the user about the minimum conditions required for capturing the
facial photograph with Liveness detection. The browser will request permission to access
the device's camera and location.

2. Capture Process: After granting permission, the user will be prompted to capture their
photograph by clicking on "capturar fotografia". They must keep their face within the on-
screen oval until the internal clock completes.

3. Data Entry: On the Identification Data screen, users must enter their unique
identification number and individual fingerprint code to proceed with the identity
validation by pressing "Continuar".

4. Completion: Upon completion, users will see a summary screen indicating that the
transaction has finished successfully.

Step 4: Receiving the Response

After the user completes the process, your application will receive a JSON object at the specified
callback URL. The JSON structure includes the transaction's outcome and relevant data, such as the
id , codeld , and ThresHoldCompareFaces .

Step 5: Retrieving Transaction Results

The Validation method is a crucial part of the identity verification process, allowing you to retrieve
detailed information about the transaction and the outcome of the validation. This method is
particularly useful for post-verification steps, such as auditing, compliance checks, or further user
verification processes. Below, we detail how to use the Validation method with a curl command,
which is designed to fetch the results of a specific transaction using a GET request.

Overview

To retrieve the results of an identity verification transaction, you will need the codeld that was
provided in the callback after the verification process. This codeld serves as a unique identifier for
the transaction, enabling you to query the verification results.

CURL Command Structure

The curl command to retrieve the transaction results is structured as follows:

a4 curl -X GET
"{URL_Base}/api/{ProjectName}/Validation/{id}?returnimages=false" \
-H "accept: application/json" \
-H "apiKey: your_api_key" \
-H "returnDocuments: true" \
-H "returnVideoLiveness: false"

Parameters Explained

e {URL_Base}: The base URL of the identity verification service. This should be replaced
with the actual URL provided to you.

e {ProjectName}: The name of your project as registered with the identity verification
service. Replace {ProjectName} with your specific project name.

e {id}: The unique identifier (codeld) for the transaction you wish to retrieve. This ID is
typically provided in the callback after the verification process.

e returnlmages (Query Parameter): Specifies whether to include images in the response.
Setting this to false excludes images from the response, while true includes them.

Headers

e accept: Indicates the expected media type of the response, which is application/json for
JSON-formatted data.

o apiKey: Your API key for authentication with the identity verification service. Replace
your_api_key with the actual API key assigned to your project.

e returnDocuments: A header that determines whether document data should be included
in the response. Setting this to true includes document data, while false excludes it.

e returnVideoLiveness: Indicates whether the response should contain video data from
the liveness verification process. true includes video data, and false excludes it.

Usage Tips

e Ensure all placeholders in the curl command are replaced with actual values specific to
your project and the transaction you're querying.

e Execute the curl command in a terminal or command-line interface. The server's
response will include the transaction details and validation results, according to the
parameters you've set.

e Carefully process the JSON response to extract and utilize the verification information as
needed in your application or for compliance purposes.

By following these guidelines and using the corrected URL structure and parameters, you can
effectively retrieve detailed information about identity verification transactions, enhancing your
application's security and user management processes.

Routine Flow Chart

Tener on cuanta que, para el consumo de los
Servicios oe nuesiras AFls ss
requiere gl senviciy del proyedio ¥ la AP key
Proporcionata por nuestro
aquipo de lecnologia

VERIFICAR

INICID

MICIO DE TRANSACCION DESPUES DE
COMSUMIR COMPOMENTES

RUTINA COMPARE FACES

SERVICIO POST

; B arkts
{projectMame)

tapifintegrat parefacss

DTy

RESPLESTA NO SATISFACTORIA

Los dates proporcionados no
corresponden con los criterios
esparados

Durante a5t #1apa, @5 Crucial Tener @n cuenta que para &
consumeo ded sarvicio "Closs Compare Faces”, e raquiers
tensr en pozesion el "KeyProcessLivensss” y |3 magen
devueita por nuesiro componente para el ﬂLI]D de cierre de

fransaccién y verificackin de identidad biométrica

VERIFICAR

Ohbjete Servicio {SartCompareF aces)

ey

RESPUESTA OBTENIDR
FOR EL SERVICIO

RESPUESTA SATISFACTORIA

Obigta g8 Tormate JSON con la
informcian de Ia ransaccidn a
Iniciada

Consumo de G Refomo de
FhotoBasetd y KeyProcessUiveness

SERVICIO POST
apilniegration/{projeciName iValidation/Cles eCompareF ace:

OBJETO

D’ﬂy ;

RESPUESTA NO SATISFACTORIA

Los datos proporcionasos no
comespanden con los crilarios
esperadas

SPUESTA OBTENID®
POR EL SERVICIO

RESPUESTA SATISFACTORIA

Objets de formato JSON con la
Informacion de ka transaccian fingl y resultado
blometrico

FIN

Después de haber consumido sEtstactonaments &l serviclo de
Tegislro d@ Ciefre, @3 NECRSANo tener en cuenta &l UID devuatn
por el sevicie StarCompareFaces, la CustomerPnolo devuelta
por nuesiro componente, y el KeyProcessLiveness al hacer el
llamado del servicia de cierme. Este ultmeao traerd el resultada finai|
de la ransaccion con la comparacidn facial realizada, con los
sipuientes estados
Process satisfactorio - 1dState 2
Restro no corresponds - 1dStale 10

https://docs.ado-tech.com/uploads/images/gallery/2024-05/7qYhBJrwMMDAYPli-image.png

KYC Service Overview and
Integration

Login Service

POST https://api-fintecheart.ado-tech.com/api/v1l/auth/login

Parameters

Headers
e x-accountid : Account id

Body structure

"username": "username",

"password": "password"
Response structure

"success": true,
"message": "Sign in successfully",
"StatusCode": 200,
"code": "Sign in successfully",
"data": {
"access_token": "ey]hbGciOiJSUzI1NilsInR5cCIgOiAiS",
"expires_in": 18000,
"refresh_expires_in": 1800,
"refresh_token": "eyJhbGciOijJlUzI1NilsInR5cCIgOiAiSIdU",
"token_type": "Bearer",
"not-before-policy": 0,
"session_state": "131967cb-6a34-4b63-bcd6-df52dff84cdl”,

https://api-fintecheart.ado-tech.com/api/v1/auth/login

"scope": "email openid profile"

Create transaction url

POST https://api-fintecheart.ado-

tech.com/api/v1l/flowmanager/flowrequest/create

This step will require the bearer token got in the login request as authorization parameter

Parameters

headers
x-accountid : Account id

body structure

"documentType": "1",
"documentNumber": "1234097206",
“flowType": "1", // flowtype for KYC is 1
"riskAmount": 123,

"callBackUrl": "https://www.google.com"

Possible documentType values

1 Citizenship ID

2 PEP only with Passport

3 Ecuadorian Citizenship ID
4 Foreigner ID

5 Identity Card

6 Israel ID Card

7 Panamanian Citizenship ID
8 Peruvian Citizenship ID

9 Paraguayan Citizenship ID

10 INE Mexico
11 Chilean Identity ID

https://api-fintecheart.ado-tech.com/api/v1/flowmanager/flowrequest/create
https://api-fintecheart.ado-tech.com/api/v1/flowmanager/flowrequest/create

12 Puerto Rico Identification

13 Costa Rican Identity ID

14 Personal Identification Document Guatemala
15 Uruguayan ID

16 Bolivian Citizenship ID

17 PPT

18 National Identity Document Spain

19 National Identity Document Argentina

20 Passport

WebHook for data transfering

There must be a login service for authentication and a push service to transfer the data.
Login
Parameters
The data must be received as a x-www-form-urlencoded
e client id

e client_secret

e grant type: authentication type

Response structure

"access_token": "ey]hbGciOiJSUzI1NilliA6IC)6eFB3...",
"expires_in": 300,

"refresh_expires_in": 0,

"token_type": "Bearer",

"not-before-policy": 0,

"scope": "email profile"

Push

Parameters

This is the JSON structure with the transaction data sent by the platform

"Uid": "hba7gasd-785c-410e-80a4-27cb82215956",
"key": "jdfys9d8y7fs87dyfs8dhjd",
"StartingDate": "2023-09-07T10:55:26.603",
"CreationDate": "2023-09-07T10:55:47.99",
"CreationlP": "156.09.97.2",
"DocumentType": 1,
"IdNumber": "1238657888",
"FirstName": "Nombre",
"SecondName": "Nombre",
"FirstSurname": "Apellido",
"SecondSurname": "Apellido",
"Gender": "G" //Mor F
"BirthDate": "2002-08-30T00:00:00",
"PlaceBirth": place of birth,
"ExpeditionCity": null,
"ExpeditionDepartment": null,
"BirthCity": null,
"BirthDepartment": null,
"TransactionType": 1,
"TransactionTypeName": "Enroll",
"IssueDate": "2020-09-03T00:00:00",
"Transactionld": "125",
"Productld": "1",
"ComparationFacesSuccesful": false,
"FaceFound": false,
"FaceDocumentFrontFound": false,
"BarcodeFound": false,
"ResultComparationFaces": 0.0,
"ComparationFacesAproved": false,
"Extras": {

"ldState": "4",

"StateName": "State description”
h
"NumberPhone": null,
"CodFingerprint": null,
"ResultQRCode": null,
"DactilarCode": null,
"ReponseControlList": null,

"Images": [1],

"SignedDocuments": [],
"Scores": [
{
"Id": 4,
"UserName": null,
"StateName": "State description",
"StartingDate": "0001-01-01T00:00:00",

"Observation": null

1.
"Response_ANI": null,

"Parameters": null

KYC Transaction Flow

Before transaction starts

Before starting each transaction, it is necessary to consume the FindByNumberldSuccess
service to verify the enrollment of a document number. This service is crucial because it allows us
to define the flow to follow in order to verify the person's identity. In this process, the
FindByNumberldSuccess service searches for information related to a specific document
number, confirming whether the person associated with that document is properly enrolled or not.

/api/{projectName}/FindByNumberldSuccess

Parameters

e projectName : The assigned project name

e apikey : The key assigned to the project

e identification : The client's identification number

e docType : Type of document to be queried

e returnimages : Determine if the images from the transaction will be returned

e enrol : Default value : false
e Authorization : OAuth validation token

Responses

200 - Successful query

"Uid": "string",

"StartingDate": "2024-10-08T19:17:13.860Z",
"CreationDate": "2024-10-08T19:17:13.860Z",
"CreationlP": "string",

"DocumentType": O,

"IdNumber": "string",

"FirstName": "string",

"SecondName": "string",

"FirstSurname": "string",

"SecondSurname": "string",

"Gender": "string",

"BirthDate": "2024-10-08T19:17:13.860Z",
"Street": "string",

"CedulateCondition": "string",

"Spouse": "string",

"Home": "string",

"MaritalStatus": "string",
"DateOfldentification": "2024-10-08T19:17:13.860Z",
"DateOfDeath": "2024-10-08T19:17:13.860Z",
"MarriageDate": "2024-10-08T19:17:13.860Z",
"Instruction": "string",

"PlaceBirth": "string",

"Nationality": "string",

"MotherName": "string",

"FatherName": "string",

"HouseNumber": "string",

"Profession": "string",

"ExpeditionCity": "string",
"ExpeditionDepartment": "string",
"BirthCity": "string",

"BirthDepartment": "string",
"TransactionType": O,
"TransactionTypeName": "string",
"IssueDate": "string",

"BarcodeText": "string",
"OcrTextSideOne": "string",
"OcrTextSideTwo": "string",
"SideOneWrongAttempts": 0,
"SideTwoWrongAttempts": 0,
"FoundOnAdoAlert": true,

"AdoProjectld": "string",

"Transactionld": "string",

"Productld": "string",
"ComparationFacesSuccesful": true,
"FaceFound": true,
"FaceDocumentFrontFound": true,
"BarcodeFound": true,
"ResultComparationFaces": 0O,

"ResultCompareDocumentFaces": 0,

"ComparationFacesAproved": true,
"ThresholdCompareDocumentFaces": 0,
"CompareFacesDocumentResult": "string",
"Extras": {
"additionalPropl": "string",
"additionalProp2": "string",
"additionalProp3": "string"
h
"NumberPhone": "string",
"CodFingerprint": "string",
"ResultQRCode": "string",
"DactilarCode": "string",
"ReponseControlList": "string",
"Latitude": "string",
"Longitude": "string",
"Images": [
{
"1d": 0,
"ImageTypeld": 0,
"ImageTypeName": "string",
"Image": "string",

"DownloadCode": "string"

}
I
"SignedDocuments": [
"string"
1
"Scores": [
{
"1d": 0,
"UserName": "string",
"StateName": "string",
"CausalRejectionName": "string",
"StartingDate": "2024-10-08T19:17:13.860Z",
"Observation": "string"
}
1

"Response_ANI": {
"Niup": "string",

"FirstSurname": "string",
"Particle": "string",
"SecondSurname": "string",
"FirstName": "string",
"SecondName": "string",
"ExpeditionMunicipality": "string",
"ExpeditionDepartment": "string",
"ExpeditionDate": "string",
"CedulaState": "string"
h
"Parameters": "string",
"StateSignatureDocument": true,
"Sessionld": "string",
"CustomerldFromClient": "string",
"Processld": "string",
"DocumentTypeFromClient": 0,
"l[dNumberFromClient": "string",

"NotEnrolledForComparisonWithClientData": true

Unenrolled client

/api/{projectName}/GetConfig

Parameters

e projectName : The assigned project name
e apikey : The key assigned to the project
e productld

e Message : Information for event logging

Responses

200 - Configuration results

{
"TryLiveness": 0,
"Token_KYC": "string",
"UrlServiceOCR": "string",
"UrlServicelLiveness": "string",
"UrINewServicelLiveness": "string",

"UrlServiceLivenessV3": "string",

"UrlUiLivenessV3": "string",

"CodeTransactionLivenessV3": "string",

"ConfigFileLiveness": "string",

"ConfigGeneralFileLiveness": "string",

"LivenessThreshold": "string",

"TypelLiveness": 0,

"ProjectName": "string",

"ApiKey": "string",

"Base_Uri": "string",

"TryOcr": 0,

"GetGeoreference": 0,

"GetToken": "string",

"SecondCamera": true,

"Web": true,

"Android": true,

"lOS": true,

"Web_Component": true,

"Android_Component": true,

"IOS_Component": true,

"MethodOfCaptureFingers": 0O,

"UseCardCaptureOnline": true,

"UrlCardCapture": "string",

"AttepmtsCardCapture": 0,

"GetFacialFeatures": true,

"CardCaptureType": 0,

"UrlCardCaptureV2": "string",

"TraceUrl": "string",

"RequireCameraPermission": true,

"RequireLocationPermission": true,

"ConfigurationUl": {

"LivenessUl": {

"Id": 0,
"LookLeftText": "string",
"LookRightText": "string",
"LookAtCenterText": "string",
"InitialAlignFaceText": "string",
"OngoingAlignFaceText": "string",
"MultipleFacesFoundText": "string",
"GetFurtherText": "string",
"ComeCloserText": "string",
"ProcessingDataText": "string",
"SessionEndedSuccessfullyText": "string",
"FacellluminationTooBrightText": "string",
"FacellluminationTooDarkText": "string",
"BadFaceFocusText": "string",
"FacePositionNotStableText": "string",
"UnderlineColorResource": "string",
"LoaderColorResource": "string",
"BackArrowColorResource": "string",
"DirectingArrowsColor": "string",
"SuccessSignColor": "string",
"SuccessSignBackgroundColor": "string",

"InstructionsPosition": 0,
"DirectionSignShape": 0,
"BackButtonShape": 0,
"BackButtonSide": 0

H

"CardCaptureUl": {
"Id": 0,
"CaptureFrontinstructionsText": "string",
"CaptureBacklinstructionsText": "string",
"MainColor": "string",
"BackArrowColor": "string",
"InstructionsColor": "string",
"InstructionsBackgroundColor": "string",
"BackArrowShape": 0,
"InstructionsPosition": 0,
"BackArrowSide": 0

/api/Integration/{projectName}/Validation/New

Parameters

transactioninfo (body) : The data of the new transaction
apiKey (header) : The key assigned to the project

e projectName (path) : The assigned project name
Authorization (header) : OAuth validation token

Body example

"Productld": O,
"CustomerPhoto": "string",
"DocumentType": "string",
"longitude": "string",
"Latitude": "string",
"IdAssociated": "string",
"ClientRole": "string",
"KeyProcessLiveness": "string",
"UldDevice": "string",
“ldUser": 0,

"SourceDevice": 0,
"SdkVersion": "string",

"OS": "string",
"BrowserVersion": "string",
"IMEI": "string",

"Riskld": "string",
"OriginTransactionld": "string",
"Score": "string",

"UserName": "string",

"ProjectName": "string",
"Sessionld": "string",
"CustomerldFromClient": "string",
"Processld": "string",
"DocumentTypeFromClient": 0,
"lIdNumberFromClient": "string",
"Uid": "string"

Responses

200 - The transaction has been successfully initiated. An object with associated information
is returned

201 - Facial recognition has been successful. An object is returned with information about
the created transaction, including the unique transaction number

"Uid": "string",

"StartingDate": "2024-10-08T19:48:17.5582",
"CreationDate": "2024-10-08T19:48:17.5582",
"CreationlP": "string",

"DocumentType": O,

"ldNumber": "string",

"FirstName": "string",

"SecondName": "string",

"FirstSurname": "string",

"SecondSurname": "string",

"Gender": "string",

"BirthDate": "2024-10-08T19:48:17.558Z",
"Street": "string",

"CedulateCondition": "string",

"Spouse": "string",

"Home": "string",

"MaritalStatus": "string",
"DateOfldentification": "2024-10-08T19:48:17.558Z7",
"DateOfDeath": "2024-10-08T19:48:17.558Z",
"MarriageDate": "2024-10-08T19:48:17.558Z",
"Instruction": "string",

"PlaceBirth": "string",

"Nationality": "string",

"MotherName": "string",

"FatherName": "string",

"HouseNumber": "string",

"Profession": "string",

"ExpeditionCity": "string",
"ExpeditionDepartment": "string",

"BirthCity": "string",

"BirthDepartment": "string",

"TransactionType": 0,
"TransactionTypeName": "string",
"IssueDate": "string",
"BarcodeText": "string",
"OcrTextSideOne": "string",
"OcrTextSideTwo": "string",
"SideOneWrongAttempts": 0,
"SideTwoWrongAttempts": 0O,
"FoundOnAdoAlert": true,
"AdoProjectld": "string",
"Transactionld": "string",
"Productld": "string",
"ComparationFacesSuccesful": true,
"FaceFound": true,
"FaceDocumentFrontFound": true,
"BarcodeFound": true,
"ResultComparationFaces": 0,
"ResultCompareDocumentFaces": 0,
"ComparationFacesAproved": true,
"ThresholdCompareDocumentFaces": 0,
"CompareFacesDocumentResult": "string",
"Extras": {
"additionalPropl": "string",
"additionalProp2": "string",
"additionalProp3": "string"
+
"NumberPhone": "string",
"CodFingerprint": "string",
"ResultQRCode": "string",
"DactilarCode": "string",
"ReponseControlList": "string",
"Latitude": "string",
"Longitude": "string",
"Images": [
{
"Id": 0,
"ImageTypeld": 0,
"ImageTypeName": "string",
"Image": "string",
"DownloadCode": "string"
}
1
"SignedDocuments": [
"string"
I
"Scores": [
{
"Id": 0,
"UserName": "string",
"StateName": "string",
"CausalRejectionName": "string",
"StartingDate": "2024-10-08T19:48:17.558Z7",
"Observation": "string"

}
I
"Response_ANI": {
"Niup": "string",
"FirstSurname": "string",
"Particle": "string",
"SecondSurname": "string",
"FirstName": "string",
"SecondName": "string",
"ExpeditionMunicipality": "string",
"ExpeditionDepartment": "string",
"ExpeditionDate": "string",
"CedulaState": "string"
H
"Parameters": "string",
"StateSignatureDocument": true,
"Sessionld": "string",
"CustomerldFromClient": "string",
"Processld": "string",
"DocumentTypeFromClient": 0,
"l[dNumberFromClient": "string",
"NotEnrolledForComparisonWithClientData": true

/api/Integration/{projectName}/Validation/Images/Docume
ntFrontSide

Parameters

e sideOnelnfo (body) : The image encoded in base64
e apiKey (header) : The key assigned to the project
e projectName (path) : The assigned project name

e Authorization (header) : OAuth validation token

Body example

{
"Image": "string",
"DocumentType": "string",
"UldDevice": "string",
"ldUser": 0,
"SourceDevice": 0,
"SdkVersion": "string",
"OS": "string",
"BrowserVersion": "string",
"TransactionType": 0,
"Productld": "string",
"Uid": "string",
"Riskld": "string"

}

Responses

200 - The document has been successfully uploaded, and the transaction information has
been updated

201 - The previously registered client was found. An object is returned with information
about the created transaction, including the unique transaction number

"Uid": "string",

"StartingDate": "2024-10-08T19:59:17.674Z",
"CreationDate": "2024-10-08T19:59:17.674Z",
"CreationlP": "string",

"DocumentType": O,

"ldNumber": "string",

"FirstName": "string",

"SecondName": "string",

"FirstSurname": "string",

"SecondSurname": "string",

"Gender": "string",

"BirthDate": "2024-10-08T19:59:17.674Z",
"Street": "string",

"CedulateCondition": "string",

"Spouse": "string",

"Home": "string",

"MaritalStatus": "string",
"DateOfldentification": "2024-10-08T19:59:17.674Z7",
"DateOfDeath": "2024-10-08T19:59:17.674Z",
"MarriageDate": "2024-10-08T19:59:17.674Z",
"Instruction": "string",

"PlaceBirth": "string",

"Nationality": "string",

"MotherName": "string",

"FatherName": "string",

"HouseNumber": "string",

"Profession": "string",

"ExpeditionCity": "string",
"ExpeditionDepartment": "string",

"BirthCity": "string",

"BirthDepartment": "string",
"TransactionType": 0,
"TransactionTypeName": "string",
"IssueDate": "string",

"BarcodeText": "string",

"OcrTextSideOne": "string",
"OcrTextSideTwo": "string",
"SideOneWrongAttempts": 0,
"SideTwoWrongAttempts": 0O,
"FoundOnAdoAlert": true,

"AdoProjectld": "string",
"Transactionld": "string",
"Productld": "string",
"ComparationFacesSuccesful": true,
"FaceFound": true,
"FaceDocumentFrontFound": true,
"BarcodeFound": true,
"ResultComparationFaces": 0,
"ResultCompareDocumentFaces": 0,
"ComparationFacesAproved": true,
"ThresholdCompareDocumentFaces": 0,
"CompareFacesDocumentResult": "string",
"Extras": {
"additionalPropl": "string",
"additionalProp2": "string",
"additionalProp3": "string"
H
"NumberPhone": "string",
"CodFingerprint": "string",
"ResultQRCode": "string",
"DactilarCode": "string",
"ReponseControlList": "string",
"Latitude": "string",
"Longitude": "string",
"Images": [
{
"Id": 0,
"ImageTypeld": 0,
"ImageTypeName": "string",
"Image": "string",
"DownloadCode": "string"

}
1
"SignedDocuments": [
"string"
1
"Scores": [
{
"Id": 0,
"UserName": "string",
"StateName": "string",
"CausalRejectionName": "string",
"StartingDate": "2024-10-08T19:59:17.674Z",
"Observation": "string"
}
1
"Response_ANI": {
"Niup": "string",

"FirstSurname": "string",
"Particle": "string",
"SecondSurname": "string",
"FirstName": "string",
"SecondName": "string",

"ExpeditionMunicipality": "string",
"ExpeditionDepartment": "string",
"ExpeditionDate": "string",
"CedulaState": "string"
h
"Parameters": "string",
"StateSignatureDocument": true,
"Sessionld": "string",
"CustomerldFromClient": "string",
"Processld": "string",
"DocumentTypeFromClient": 0,
"l[dNumberFromClient": "string",
"NotEnrolledForComparisonWithClientData": true

}

/api/Integration/{projectName}/Validation/Images/Docume
ntBackSide

Parameters

e sideOnelnfo (body) : The image encoded in base64
e apiKey (header) : The key assigned to the project
e projectName (path) : The assigned project name

e Authorization (header) : OAuth validation token

Body example

{
"Image": "string",
"DocumentType": "string",
"UldDevice": "string",
“ldUser": 0,
"SourceDevice": 0,
"SdkVersion": "string",
"OS": "string",
"BrowserVersion": "string",
"TransactionType": O,
"Productld": "string",
"Uid": "string",
"Riskld": "string"

}

Responses

200 - The document has been successfully uploaded, and the transaction information has
been updated

201 - The previously registered client was found. An object is returned with informationabout
the created transaction, including the unique transaction number

"Uid": "string",

"StartingDate": "2024-10-08T19:48:17.4942",
"CreationDate": "2024-10-08T19:48:17.4947",
"CreationlP": "string",

"DocumentType": 0,

"I[dNumber": "string",

"FirstName": "string",

"SecondName": "string",

"FirstSurname": "string",

"SecondSurname": "string",

"Gender": "string",

"BirthDate": "2024-10-08T719:48:17.494Z7",
"Street": "string",

"CedulateCondition": "string",

"Spouse": "string",

"Home": "string",

"MaritalStatus": "string",
"DateOfldentification": "2024-10-08T19:48:17.494Z",
"DateOfDeath": "2024-10-08T19:48:17.494Z7",
"MarriageDate": "2024-10-08T19:48:17.49427",
"Instruction": "string",

"PlaceBirth": "string",

"Nationality": "string",

"MotherName": "string",

"FatherName": "string",

"HouseNumber": "string",

"Profession": "string",

"ExpeditionCity": "string",
"ExpeditionDepartment": "string",

"BirthCity": "string",

"BirthDepartment": "string",
"TransactionType": O,
"TransactionTypeName": "string",
"IssueDate": "string",

"BarcodeText": "string",

"OcrTextSideOne": "string",
"OcrTextSideTwo": "string",
"SideOneWrongAttempts": 0O,
"SideTwoWrongAttempts": 0,
"FoundOnAdoAlert": true,

"AdoProjectld": "string",

"Transactionld": "string",

"Productld": "string",
"ComparationFacesSuccesful": true,
"FaceFound": true,
"FaceDocumentFrontFound": true,
"BarcodeFound": true,
"ResultComparationFaces": 0,

"ResultCompareDocumentFaces": 0,
"ComparationFacesAproved": true,
"ThresholdCompareDocumentFaces": 0,
"CompareFacesDocumentResult": "string",
"Extras": {
"additionalPropl": "string",
"additionalProp2": "string",
"additionalProp3": "string"
H
"NumberPhone": "string",
"CodFingerprint": "string",
"ResultQRCode": "string",
"DactilarCode": "string",
"ReponseControlList": "string",
"Latitude": "string",
"Longitude": "string",
"Images": [
{
"Id": 0,
"ImageTypeld": 0,
"ImageTypeName": "string",
"Image": "string",
"DownloadCode": "string"
}
1
"SignedDocuments": [
"string"
I
"Scores": [
{
"Id": 0,
"UserName": "string",
"StateName": "string",
"CausalRejectionName": "string",
"StartingDate": "2024-10-08T19:48:17.494Z",
"Observation": "string"
}
1
"Response_ANI": {
"Niup": "string",
"FirstSurname": "string",
"Particle": "string",
"SecondSurname": "string",
"FirstName": "string",
"SecondName": "string",
"ExpeditionMunicipality": "string",
"ExpeditionDepartment": "string",
"ExpeditionDate": "string",
"CedulaState": "string"
+
"Parameters": "string",
"StateSignatureDocument": true,
"Sessionld": "string",

"CustomerldFromClient": "string",

"Processld": "string",
"DocumentTypeFromClient": 0,
"I[dNumberFromClient": "string",
"NotEnrolledForComparisonWithClientData": true

/api/Integration/{projectName}/Validation/Close

Parameters

e info (body) : The image encoded in base64

e apiKey (header) : The key assigned to the project
e projectName (path) : The assigned project name
e Authorization (header) : OAuth validation token

Body example

{
"Uid": "string",
"Riskld": "string"
}

Response

200 -The transaction has been successfully created

