
SDKS
Android SDK Guide
iOS SDK Guide
JavaScript SDK Guide
Liveness API Documentation

Android SDK Guide
This guide provides detailed instructions for integrating the Scanovate Colombia SDK into your
Android application, enabling robust identity validation processes through facial biometric
verification.

Requirements and Compatibility
Before starting the integration process, ensure your development environment meets the following
requirements:

Android Studio: The latest version is recommended for optimal compatibility.
Minimum SDK Version: Android SDK version 21 (Lollipop) or higher.
Target SDK Version: Android SDK version 35 (Android 15) to ensure your app is
compatible with the latest Android OS.
Compile SDK Version: Android SDK version 35.

Installation
1. Add the library

Download the "hybridComponent_3_0_0_15.aar" library and add it to your project's libs folder.
Ensure you configure your project's build.gradle file to include the library as a dependency:

2. Import Required Libraries

Add the following imports in your activity or fragment where you intend to use the Scanovate SDK:

dependencies {
 implementation(name: 'hybridComponent_3_0_0_15', ext: 'aar')
}

“

Java

import mabel_tech.com.scanovate_demo.ScanovateHandler;
import mabel_tech.com.scanovate_demo.ScanovateSdk;
import mabel_tech.com.scanovate_demo.model.CloseResponse;
import mabel_tech.com.scanovate_demo.network.ApiHelper;

“

The CloseResponse object will contain the results of the transaction, providing detailed feedback on
the validation process.

Example Implementation

For a practical example of how to implement the Scanovate SDK in your Android application, refer
to the following steps:

Setup UI Elements: Initialize buttons, text views, and other UI elements in your activity's
onCreate method. This setup includes buttons for starting the enrollment and verification
processes, a text view for displaying results, and an edit text for user input.
Invoke the SDK: Use the HybridComponent.start method to launch the Scanovate SDK.
This method requires several parameters, including language, project name, API key,
product ID, and the SDK URL. It also allows you to specify the type of capture (e.g.,
liveness detection, document capture) and whether to capture the front or back side of a
document.
Handle Callbacks: Implement ScanovateHandler to manage success and failure callbacks.
On success, process the CloseResponse object to display the transaction result. On failure,
handle errors accordingly.

import mabel_tech.com.scanovate_demo.network.RetrofitClient;

Example

// Example capture method implementation

“

 public void capture() {
 HybridComponent.start(this,
 "documentType" //Tipo de Documento "VerificarID en
Documentación de ADO"
 "es", //language: "en") // en (para ingles) es (para español)
 "lulobankqa" //ProyectName
 "db92efc69991", //ApiKey
 "1", //ProductId
 "https://adocolumbia.ado-tech.com/lulobankqa/api/", //Url_Sdk
 "https://api-dev.ado-tech.com/api/EventTracer/",
//Url_TracerBackendServices (Servicio Proporcionado Por nosotros para la Flujo de los
LOGS o TAGS del proceso.) ** Opcional**

Parameters Explained
language: Sets the language for the SDK's UI.
projectName: Unique identifier for your project.
apiKey: Authentication key provided by Scanovate.
productId: Identifies the specific Scanovate product/service being used.
sdkUrl: The base URL for making API calls to the Scanovate services.
Url_TracerBackendServices: Url for the event reporting service is not required and is
only an extra service. (Optional)
ImmersiveMode: Mode to make the component consume all available space while hiding
the system UI.
Process_ID: Process identifier to perform the events mapped at the SDK level. (Optional
)

 "true" //ImmersiveMode
 "f47ac10b-58cc-4372-a567-0e02b2c3d479", //ProcessID (ID creado
con el servicio de CreateProccees para trasa de eventos) **Opcional**
 functionCapture, 1 Livennes , 2 CardCapture
 isFrontSide, // Captura de Documento (True captura
Frontal)(False Captura Trasera)
 null, //Token
 "null",
 new ScanovateHandler() {
 @Override
 public void onSuccess(CloseResponse response, int code, String uuidDevice) {
 progress.show();
 String calificacion = response.getExtras().getStateName();
 evaluateTransaction(response.getTransactionId());
 }

 @Override
 public void onFailure(CloseResponse closeResponse) {
 String calificacion = closeResponse.getExtras().getStateName() +" "+
closeResponse.getExtras().getAdditionalProp1() ;
 }

 });
 }

functionCapture: Specifies the operation mode of the SDK.
documentSide: Determines which side of the document to capture.
additionalParameters: Allows for passing any additional required parameters.
completionHandler: Closure that handles the response or error from the SDK.

Process Transaction Results
After capturing the necessary data, use the RetrofitClient to send the data for validation and display
the final state of the transaction to the user.

State Codes Reference
Be aware of the following state codes when processing responses:

200 : "SUCCESS"
201 :
"THE_NUMBER_OF_CONFIGURED_ATTEMPTS_WAS_EXCEEDED_AND_NO_LIFE_WAS_FOUND_
IN_THESE"
203 : "TIMEOUT"
302 : "INTERNAL_ERROR"
204 : "CANCELED_PROCED"
205 : "PERMISSIONS_DENIED"
401 : "TOKEN_ERROR"
404 : "INVALID_CREDENTIALS"
500 : "CONNECTION_ERROR"

This guide aims to streamline the integration process of the Scanovate Colombia SDK into your
Android application, ensuring you can efficiently implement a robust identity validation system.

Demo Application
For a comprehensive example, including full source code demonstrating the integration and usage
of the Scanovate Colombia SDK, visit our GitHub repository:

Scanovate Colombia SDK Demo App For Android

This demo app provides a hands-on example to help you understand how to integrate and utilize
the SDK in your own applications.

https://docs.ado-tech.com/uploads/images/gallery/2024-05/XihMSllr4MMlzPKY-image.png
https://github.com/Ado-Tech/demo.components.android/tree/feature-3.0.0.15

iOS SDK Guide
This guide outlines the steps for integrating the SMSDK framework into your iOS application,
enabling identity validation processes through facial biometric verification or document scanning.

Installation

1. Add the library
Download the "SMSDK.xcframework" file.
In your Xcode project, navigate to the target's general settings.
Go to the "Frameworks, Libraries, and Embedded Content" section.
Click the "+" button and add the "SMSDK.xcframework" to your project. Ensure it's
set to "Embed & Sign".

2. Import Required Libraries

In the file where you plan to use the SDK, import the necessary libraries:

The TransactionResponse object will contain the results of the transaction, providing detailed
feedback on the validation process.

Minimum SDK Version for iOS

Update the minimum iOS version to iOS 11.0:

Navigate to your target's Build Settings.
Find the "Deployment" section.
Set the "iOS Deployment Target" to iOS 11.0 or higher.

Example Implementation

swift

import UIKit
import AdoComponent

“

To initiate the SMSDK framework, use the initWith method from the SMManager class. This method
requires a delegate and an SMParams object containing the launch parameters. Implement the
SMDelegate extension to handle the SDK's response.

Parameters Explained
productId: Identifier for the product being used.
projectName: Your project identifier provided by the service.
apiKey: Your API key for authentication with the service.
urlSdk: The base URL for the SDK's services.
token: Optional token for additional authentication (if required).
function: Determines the operation mode (e.g., 1 for Liveness, 2 for Document
Scanning).
isFrontSide: Indicates which side of the document to capture.
uidDevice: A unique identifier for the device.
language: Specifies the language for the SDK interface.

Resources

Intialization
let params = SMParams(productId: "1",
 projectName: "lulobankqa",
 apiKey: "db92efc69991",
 urlSdk: "https://adocolumbia.ado-tech.com/lulobankqa/api/",
 token: "",
 function: 1, // 1 for Liveness, 2 for Document Scanning
 isFrontSide: false, // true for front, false for back of the document
 uidDevice: "",
 language: "en") // "en" for English, "es" for Spanish

let smManagerVC = SMManager.initWith(delegate: self, params: params)
smManagerVC.modalPresentationStyle = .fullScreen
present(smManagerVC, animated: true, completion: nil)

// MARK: - SMDelegate
extension ViewController: SMDelegate {
 func completedWithResult(result: Bool, response: ResultsResponse?) {
 dismiss(animated: true) {
 // Handle the SDK response here
 }
 }
}

“

Resource files, including animations provided by the client, can be found at the following path
within your project:

Ensure these resources are correctly integrated into your project for the SDK to function as
intended.

State Codes Reference
Be aware of the following state codes when processing responses:

200 : "SUCCESS"
201 :
"THE_NUMBER_OF_CONFIGURED_ATTEMPTS_WAS_EXCEEDED_AND_NO_LIFE_WAS_FOUND_
IN_THESE"
203 : "TIMEOUT"
204 : "CANCELED_PROCED"
205 : "PERMISSIONS_DENIED"
401 : "TOKEN_ERROR"
404 : "INVALID_CREDENTIALS"
500 : "CONNECTION_ERROR"

Demo Application
For a comprehensive example, including full source code demonstrating the integration and usage
of the Scanovate Colombia SDK, visit our GitHub repository:

Scanovate Colombia SDK Demo App For iOS

This demo app provides a hands-on example to help you understand how to integrate and utilize
the SDK in your own applications.

SMSDKTest/Resources/Animations“

https://github.com/Ado-Tech/demo.components.swift

JavaScript SDK Guide

⚠️¡CAMBIOS!⚠️

A partir de ahora, el archivo ComponentsManager.js dejará de cargarse localmente y se
recomienda utilizar el CDN oficial de ADO Tech para una mejor gestión de versiones, mejoras de
rendimiento y actualizaciones automáticas.

Se reemplaza la importación:

por:

El uso de latest garantizará que siempre se utilice la última versión disponible, que
actualmente abarca desde la 1.0 hasta la 2.4 .

IMPORTANTE: Se le debe proporcionar a ADO un listado de dominios de los cuales se
consumirá el cdn para agregar a listas blancas y poder consumir el servicio

Integrating ADO Technologies' JavaScript SDK into your web application enables you to leverage
advanced identity verification features, such as Liveness Detection and Document Capture. This
guide provides a structured approach to seamlessly incorporate these functionalities, enhancing
the security and user experience of your platform.

Overview
The ADO Technologies JavaScript SDK offers a comprehensive suite of tools designed for real-time
identity verification. By integrating this SDK, you can authenticate users by capturing their facial
features and identification documents directly within your web application. This process is
streamlined and user-friendly, ensuring a high level of accuracy in identity verification.

<script type="text/javascript" src="Assets/scanovate_card_capture/script.js"></script>
<script type="text/javascript" src="Assets/ComponentsManager.js"></script>

<script type="text/javascript" src="https://cdn-js.ado-tech.com/latest/ComponentsManager.js"></script>

Requirements
Before starting the integration, ensure you have:

Access to ADO Technologies' JavaScript SDK url.
The API key and project name provided by ADO Technologies.
A clear understanding of the specific features (e.g., Liveness Detection, Document
Capture) you wish to implement.

Integration Steps
1. Include SDK and Assets: Incorporate the JavaScript SDK and related assets into your

web project. This involves linking to the SDK's script files and CSS for styling.
2. Configure SDK Parameters: Set up the necessary parameters for the SDK, including the

base URL, project name, API key, and product ID. These parameters are crucial for
initializing the SDK and ensuring it functions correctly within your application.

3. Implement User Interface: Design and implement the user interface through which
users will interact with the identity verification features. This includes input fields for
configuration parameters and buttons to initiate the capture process.

4. Capture Process: Utilize the SDK's functions to capture facial images or documents
based on the user's selection. This process should be intuitive, with clear instructions
provided to the user.

5. Handle Responses: Implement logic to handle the SDK's responses, including success
and error callbacks. Display the results appropriately within your application, ensuring
users are informed of the outcome.

6. Testing and Validation: Thoroughly test the integration to ensure the identity
verification process works as expected. Pay special attention to user experience, ensuring
the process is smooth and intuitive.

Parameters
To initialize the ADO Technologies JavaScript SDK for identity verification within your web
application, you'll need to configure several key parameters. These parameters are essential for
tailoring the SDK's functionality to your specific needs and ensuring the verification process
operates correctly. Below is an explanation of each parameter required for initialization:

1. UrlBase: The base URL of the ADO Technologies service. This URL is the entry point for all
SDK requests and should be provided by ADO Technologies. It determines where the SDK
sends its verification requests.

2. ProjectName: The name of your project as registered with ADO Technologies. This
parameter helps the service identify which client is making the request, ensuring that the
verification process is correctly attributed and logged.

3. ApiKey: A unique key provided by ADO Technologies that authenticates your application's
requests. The API key is crucial for securing communication between your application and
the ADO Technologies service, preventing unauthorized access.

4. ProductId: An identifier for the specific product or service you're using from ADO
Technologies. This could relate to different types of verification services offered, such as
Liveness Detection or Document Capture.

5. functionCapture: Determines the type of capture process to be initiated. This parameter
allows you to specify whether you're performing Liveness Detection, Document Capture,
or other supported verification processes. The options are typically represented as
numerical values or specific strings defined by the SDK.

6. IsFrontSide: A boolean parameter indicating whether the document capture (if
applicable) should focus on the front side of the identification document. This is relevant
for services that require document images as part of the verification process.

7. UidDevice: A unique identifier for the device being used to perform the verification. This
can be useful for logging, analytics, and ensuring that verification attempts are uniquely
associated with a specific device.

8. Token: An optional parameter that may be required for additional authentication or
session management purposes. If your verification process involves multiple steps or
requires maintaining a session state, this token can be used to manage that state across
requests.

9. ProcessId: An identifier for the specific verification process instance. This can be used to
track the progress of a verification attempt or to retrieve results after the process has
been completed (How to generate the process Id).

These parameters are typically set by assigning values to the corresponding input fields or
variables within your web application's frontend code. Once configured, these parameters are
passed to the SDK's initialization function, which prepares the SDK for the capture and verification
process based on the provided configuration.

It's important to handle these parameters securely, especially those that could be sensitive, such
as the ApiKey and Token . Ensure that your application's frontend and backend architecture support
secure transmission and storage of these values.

Example Implementation
Below is an example HTML structure demonstrating how to set up the SDK in your web application.
This example includes the SDK and asset links, configuration inputs, and the capture initiation
button.

<!DOCTYPE html>
<html lang="en">
<head>

“

https://docs.ado-tech.com/books/b-trust/page/service-documentation-create-process

This structure is a starting point for integrating the SDK. Customize the configuration and UI
according to your application's needs and the specific features you plan to use.

By following this guide, you can effectively integrate ADO Technologies' JavaScript SDK into your
web application, enabling robust identity verification functionalities that enhance the security and
user experience of your platform.

 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0,
user-scalable=0, minimal-ui">
 <title>Demo ADO Components</title>
 <script type="text/javascript" src="https://cdn-js.ado-
tech.com/latest/ComponentsManager.js"></script>
 <link rel="stylesheet"
href="Assets/scanovate_card_capture/assets/main.css">
 <link rel="stylesheet"
href="Assets/scanovate_card_capture/assets/loader.css">
</head>
<body>
 <!-- Configuration and Capture UI omitted for brevity -->

 <script>
 function InitCapture() {
 // Capture initialization logic and callbacks
 }
 </script>
</body>
</html>

Liveness API Documentation
Introduction
The Liveness API provides access to biometric liveness detection results and reporting capabilities.
This documentation focuses on two key endpoints: retrieving liveness results and generating
reports.

Important Contact Information: For information about this API and other solutions in our
catalog, please contact our financial area for evaluation at julian@ado-tech.com. All access keys,
endpoint URLs, and other access elements will only be provided after reaching a formal agreement
between both entities.

Important Note
The liveness detection process requires integration with components from https://docs.ado-
tech.com/books/b-trust/chapter/sdks. These components have associated costs and service
agreements that must be discussed with the finance department before implementation.

API Endpoints
1. Get Results
Retrieves the results of a previously executed liveness verification process.

Endpoint: POST {base_url}/api/images/getResults

Request Body:

{
 "idTransaction": "process_id",
 "user": "your_username",
 "password": "your_password",
 "apiKey": "your_api_key",

Response: The API returns detailed liveness verification results, including:

Key Response Fields:

referenceNumber : Unique identifier for the verification result
score : Overall liveness score
quality : Image quality score
probability : Probability that the subject is alive
threshold_probabillity : Minimum probability threshold for positive verification
threshold_quality : Minimum quality threshold for acceptable images
isAlive : Boolean indicating liveness detection result
isFraud : Boolean indicating potential fraud detection
image : Base64 encoded image (abbreviated in example)
videoBase64 : Base64 encoded video if applicable (abbreviated in example)

Note: The key process liveness ID required for this endpoint is obtained from the B-Trust SDK
components. Access to these components requires proper licensing and authorization.

2. Generate Report
Generates a comprehensive report of liveness verifications for a specific project and date range.

Endpoint: POST {base_url}/api/images/Report

Request Body:

 "transactionNumber": "process_id"
}

{
 "referenceNumber": "a7112314-f8c6-40b9-a5de-ab91fa98e3bc",
 "score": 0.8818287,
 "quality": 0.8818287,
 "probability": 0.9878632,
 "threshold_probabillity": 0.6,
 "threshold_quality": 0.5,
 "isAlive": true,
 "isFraud": false,
 "image": "/ ",
 "videoBase64": " "
}

Important Considerations:

It is recommended to request reports spanning only 1-2 months at a time for optimal
performance
The projectId must match the assigned project identifier from your service agreement
Date formats must follow ISO 8601 standard (YYYY-MM-DDThh:mm:ss.sssZ)

Response: The API will return a comprehensive report of liveness verification transactions within
the specified date range for the given project.

Additional Services
For more advanced biometric verification needs, the following solutions are available:

Compare Face: Validates and compares facial images
Validar rostro-persona: Verifies that a face belongs to a specific person
Validar rostro-documento: Validates a face against identification document photos

These additional services can be integrated with the liveness detection process to create a
complete identity verification solution. Each component returns useful data for integration with the
liveness verification workflow.

Service Acquisition
Our catalog contains numerous additional routines and services for biometric verification and
identity validation. For more information about all available services, pricing, and implementation:

Please contact our financial area at: julian@ado-tech.com
All access elements including API keys, endpoint URLs, and credentials will only be
provided after a formal agreement is reached between both entities
Integration support is available after service contracts are finalized

Integration Considerations

{
 "IntialDate": "2024-01-01T00:00:00.000Z",
 "EndDate": "2024-02-01T23:59:59.999Z",
 "projectId": "your_project_id"
}

Proper error handling is essential for all API calls
Credentials must be securely stored and transmitted
Results should be evaluated against your specific security threshold requirements
Integration with the B-Trust SDK components requires proper licensing and configuration

By leveraging these endpoints, you can access liveness verification results and generate
comprehensive reports for your biometric verification processes.

