
Android SDK Guide
This guide provides detailed instructions for integrating the Scanovate Colombia SDK into your
Android application, enabling robust identity validation processes through facial biometric
verification.

Requirements and Compatibility
Before starting the integration process, ensure your development environment meets the following
requirements:

Android Studio: The latest version is recommended for optimal compatibility.
Minimum SDK Version: Android SDK version 21 (Lollipop) or higher.
Target SDK Version: Android SDK version 34 (Android 14) to ensure your app is
compatible with the latest Android OS.
Compile SDK Version: Android SDK version 34.

Installation
1. Add the library

Download the "scanovate_colombia_@latest.aar" library and add it to your project's libs folder.
Ensure you configure your project's build.gradle file to include the library as a dependency:

2. Import Required Libraries

Add the following imports in your activity or fragment where you intend to use the Scanovate SDK:

dependencies {
 implementation(name: 'scanovate_colombia_@latest', ext: 'aar')
}

“

Java

import mabel_tech.com.scanovate_demo.ScanovateHandler;
import mabel_tech.com.scanovate_demo.ScanovateSdk;
import mabel_tech.com.scanovate_demo.model.CloseResponse;
import mabel_tech.com.scanovate_demo.network.ApiHelper;

“

The CloseResponse object will contain the results of the transaction, providing detailed feedback on
the validation process.

Example Implementation

For a practical example of how to implement the Scanovate SDK in your Android application, refer
to the following steps:

Setup UI Elements: Initialize buttons, text views, and other UI elements in your activity's
onCreate method. This setup includes buttons for starting the enrollment and verification
processes, a text view for displaying results, and an edit text for user input.
Invoke the SDK: Use the ScanovateSdk.start method to launch the Scanovate SDK. This
method requires several parameters, including language, project name, API key, product
ID, and the SDK URL. It also allows you to specify the type of capture (e.g., liveness
detection, document capture) and whether to capture the front or back side of a
document.
Handle Callbacks: Implement ScanovateHandler to manage success and failure callbacks.
On success, process the CloseResponse object to display the transaction result. On failure,
handle errors accordingly.

import mabel_tech.com.scanovate_demo.network.RetrofitClient;

Example

// Example capture method implementation

“

 ScanovateSdk.start(
 this, // Contex
 "1", // documentType
 1, //productId
 "1", //RiskId
 "https://api-qa.ado-tech.com/api/EventTracer/", //Url_TracerBackendServices
 customerID, //CustomerID (CID)
 sessionID, //SessionID (SID)
 "LuloBankQA", //projectName
 "F99264E00A2FEA7", //apiKey
 "https://adocolumbia.ado-tech.com/LuloBankQA/api/", //UrlBase
 numberIdentification, //numberIdentification

Parameters Explained
projectName: Unique identifier for your project.
Context: Context of the activity from which the SDK application is launched.
apiKey: Authentication key provided by Scanovate.
productId: Identifies the specific Scanovate product/service being used.
sdkUrl: The base URL for making API calls to the Scanovate services.
Url_TracerBackendServices: Url for the event reporting service is not required and is
only an extra service. (Optional)
ImmersiveMode: Mode to make the component consume all available space while hiding
the system UI.
Process_ID: Process identifier to perform the events mapped at the SDK level. (Optional
)
Verification: A parameter used to perform validation or verification within the system.
UserName: The username or identifier required for authentication using the OAuth 2.0
protocol.
Password: A password that has been hashed using the SHA-1 encryption algorithm for
secure storage or validation.
CustomerID: client identifier (Optional)

Process Transaction Results
After capturing the necessary data, use the RetrofitClient to send the data for validation and display
the final state of the transaction to the user.

 ImmersiveMode, // Inmersive Modo
 verification, //verification
 "admin", //userName
 "0f2ebb2d8b575d53251ba6704f762cd789bb592b", //password
 object : ScanovateHandler {
 override fun onSuccess(response: CloseResponse?, code: Int, uuidDevice:
String?) {
 // Respuesta las salidas del SDK
 }

 override fun onFailure(response: CloseResponse?) {
 // Respuesta las salidas del SDK
 }
 }
)

The SDK will complete the transaction when it is part of an enrollment process. It will return a
stateName with a pending status code, which can be accessed using the following in Java:

java

Or using Kotlin properties:

kotlin

With these values,This transactionId should be used to verify the final information by invoking the
ValidationId service to query the final transaction result.
In the case of a verification process, the system will respond with a stateName indicating that the
person is already registered, assigning state 14.

Overview
To retrieve the results of an identity verification transaction, you will need the transactionId that was
provided in the callback after the verification process. This transactionId serves as a unique identifier
for the transaction.

CURL Command Structure
The curl command to retrieve the transaction results is structured as follows:

Parameters Explained
{URL_Base}: The base URL of the identity verification service. This should be replaced
with the actual URL provided to you.
{ProjectName}: The name of your project as registered with the identity verification
service. Replace {ProjectName} with your specific project name.

response.getExtras().getStateName();

val stateName = response?.extras?.stateName
val idState = response?.extras?.idState
val idTransaction = response?.transactionId
val additionalInfo = response?.extras?.additionalProp1

curl -X GET
"{URL_Base}/api/{ProjectName}/Validation/{id}?returnImages=false" \
-H "accept: application/json" \
-H "apiKey: your_api_key" \
-H "returnDocuments: true" \
-H "returnVideoLiveness: false"

“

{id}: The unique identifier (codeId) for the transaction you wish to retrieve. This ID is
typically provided in the callback after the verification process.
returnImages (Query Parameter): Specifies whether to include images in the response.
Setting this to false excludes images from the response, while true includes them.

Headers
accept: Indicates the expected media type of the response, which is application/json for
JSON-formatted data.
apiKey: Your API key for authentication with the identity verification service. Replace
your_api_key with the actual API key assigned to your project.
returnDocuments: A header that determines whether document data should be included
in the response. Setting this to true includes document data, while false excludes it.
returnVideoLiveness: Indicates whether the response should contain video data from
the liveness verification process. true includes video data, and false excludes it

Json Example Response
{
 "Uid": "4a5528fe-4dbe-4864-993e-b4ed50e7622c",
 "StartingDate": "2024-07-17T09:39:56.07",
 "CreationDate": "2024-07-17T09:40:44.527",
 "CreationIP": "54.86.50.139",
 "DocumentType": 1,
 "IdNumber": "IdNumberNumber",
 "FirstName": "FirstNameuUser",
 "SecondName": "SecondNameUser",
 "FirstSurname": "FirstSurnameUser",
 "SecondSurname": "SecondSurnameUser",
 "Gender": "M",
 "BirthDate": "2001-10-24T00:00:00",
 "Street": null,
 "CedulateCondition": null,
 "Spouse": null,
 "Home": null,
 "MaritalStatus": null,
 "DateOfIdentification": null,
 "DateOfDeath": null,
 "MarriageDate": null,
 "Instruction": null,
 "PlaceBirth": "PlaceBirthUser",
 "Nationality": null,

 "MotherName": null,
 "FatherName": null,
 "HouseNumber": null,
 "Profession": null,
 "ExpeditionCity": null,
 "ExpeditionDepartment": null,
 "BirthCity": null,
 "BirthDepartment": null,
 "TransactionType": 1,
 "TransactionTypeName": "Enroll",
 "IssueDate": "2019-11-06T00:00:00",
 "BarcodeText": null,
 "OcrTextSideOne": null,
 "OcrTextSideTwo": null,
 "SideOneWrongAttempts": 0,
 "SideTwoWrongAttempts": 0,
 "FoundOnAdoAlert": false,
 "AdoProjectId": "2",
 "TransactionId": "2299",
 "ProductId": "1",
 "ComparationFacesSuccesful": false,
 "FaceFound": false,
 "FaceDocumentFrontFound": false,
 "BarcodeFound": false,
 "ResultComparationFaces": 0.0,
 "ResultCompareDocumentFaces": 0.0,
 "ComparationFacesAproved": false,
 "ThresholdCompareDocumentFaces": 0.0,
 "CompareFacesDocumentResult": null,
 "Extras": {
 "IdState": "2",
 "StateName": "Proceso satisfactorio"
 },
 "NumberPhone": null,
 "CodFingerprint": null,
 "ResultQRCode": null,
 "DactilarCode": null,
 "ReponseControlList": null,
 "Latitude": "4.710988599999999",
 "Longitude": "-74.072092",

Usage Tips
Ensure all placeholders in the curl command are replaced with actual values specific to
your project and the transaction you're querying.
Execute the curl command in a terminal or command-line interface. The server's
response will include the transaction details and validation results, according to the
parameters you've set.
Carefully process the JSON response to extract and utilize the verification information as
needed in your application or for compliance purposes.

By following these guidelines and using the corrected URL structure and parameters, you can
effectively retrieve detailed information about identity verification transactions, enhancing your
application's security and user management processes.

 "Images": [],
 "SignedDocuments": [],
 "Scores": [
 {
 "Id": 2,
 "UserName": null,
 "StateName": "Proceso satisfactorio",
 "CausalRejectionName": null,
 "StartingDate": "0001-01-01T00:00:00",
 "Observation": null
 }
],
 "Response_ANI": null,
 "Parameters": null,
 "StateSignatureDocument": null,
 "SessionId": null,
 "CustomerIdFromClient": null,
 "ProcessId": null,
 "DocumentTypeFromClient": 0,
 "IdNumberFromClient": null,
 "NotEnrolledForComparisonWithClientData": false
}

Revision #7
Created 27 December 2024 16:01:34 by roger de avila
Updated 27 December 2024 16:44:36 by roger de avila

