Sample code - avoid
promises

This example demonstrates real-time onalysis (streaming) APL.
On a regl-world situstion, that oudio will come from switchboard.
0On this example we read a file and stream is as it wos an qudioc comming from the switchboard.

The anaolysis algoritm uses 11825 somples per second, and 16 bits per somple, POM, therefore this is the recommencded
audio format.

In case a different sample-rate streamed, the docker comvert the original formaot to 11825, ond this process slows the analysis process by about 9 times.
const wavefile = reguire(“wavefile");

const fs = require("fs");
const io0 = require("socket.io-client");

const FILE_PATH = “[FILE PATH]"

const AMALYSIS_SERVER_URL = “ws://localhost:2253%; // assuming the docker is rumning on the local hest
const AUDIO _PACKET_SIZE M5 = 388; // 388 ms is the remoemended buffer size
streamFile(AMALYSIS_SERVER_URL, FILE_PATH, “json™)

function streamFilelanalysisServerlrl, inputFilePath, outputType = "json") {

const wav = new wovefile.WaveFile();
const buffer = fs.readFileSync(inputFilePath)

wav . fromBuffer{buffer);

¥ Tif (wov.fmt. bitsPerSomple ¥ B '== @) |
throw new Error("invalid bitsPerSaomple®};
}

* Tconst socket = io.connectianalysisServerUrl,
transports: [“websocket"]

socket
on{"connect”, () => sendHandshoke(socket, wav, outputType))
- ¥ .on("connect_error", (err) =» {
throw err
w ¥ on{"eudic-analysis-error", (err} == {
throw err

13

-on{ "handshake-done”, (r)} =» sendSomples(socket, waw))
.on{ 'oudic-analysis', (r) = processAnalysisDoto(socket, r))
.on{"onalysis-report-ready", (r) => analysisReportReady(socket, r))

L ¥ on{"oudio-analysis-completed”,

(r) == {

https://docs.ado-tech.com/uploads/images/gallery/2025-03/qnFn74Z9fBqnqifa-64.png

- Yif {!'r.success) {
throw mew Error{r?.error || "Unexpected error occurred on finalize");

}

fetchinalysisReport{socket);
)
5

const fetchhnalysisReport = (socket) == {

¥ Tsocket.emt("fetch-analysis-report”, {
/4 return report on json format
outputFormat: "json”,
£# true -» return on the report all the segments in the call.
A4 1n that case, the result will be sumilar to an offline analysis
fetchSegments: trus,
1);
;

const analysisReportReady = (socket, r) == {

¥ Tif (lr.success) |
throw new Error{r?.error || "Unexpected error occcurred on finalize");

}

console. log(I50N . stringify(rl);

socket disconnect();

1 H
const processhnalysisData = (sockek, {success, doka}} == {

* Tif (!success) {
throw mew Error(dota.error);

}

¥ Tif (daota.dome) {
console. LogCJS0N. stringi fyCdatal) + ““rn™);
}
¥

const sendHondshake = (socket, wav, outputTypel == {

¥ T socket.emt("handshake", {
1s5PCM: wav. et . gudioFormat === 1,
channels: wav. fmt_nusChannels,
backgroundioise: 10868,
bitRate: waow fmt. bitsPerSample,
sompleRate: wav. fet . sompleRate,
outputType,

https://docs.ado-tech.com/uploads/images/gallery/2025-03/ZleM1eCNKonvdXuf-65.png

function calcPacket5izeBytes{wav, audiolengthMs){
A#F this function assumes bitsPerSample = 16 or 8 ==> the 2 supported walues by the docker

const singleSampleTimeMs = 1888 / wov. fmt_ sampleRaote;
const singleSampleSizeBytes = wav.fmt bitsPerSample / & * wav. fmt.numChaonnels;

Meed to round to integer, as oudiolengthM: ¢ singleSAmpleTimeMS most Likely will not be an integer
const requiredsamplesCount = Math.round{audiclengthMs / singleSampleTimeM5);

const packetiizeBytes = requiredSamplesCount * singleSampleSizeBytes;

return packetSizeBytes;

const sendSomples = (socket, wav) == |

let packetSize = calcPacketSizeBytes(way, AUDIO_PACKET_SIZE_MS);
let offset = @;

const samples = wav_dota. somples;
¥ ¥ const interwal = setInterval(() =» {
¥ ¥Y1if (!socket. connected’
throw new Error(~Socket is mot connected");
const arraySize = Math min(packetSize. samples.bytelength - of fset):
¥ ¥Yif (arraySize}

socket. em t{"audic-stream", somples.sliceloffset, offset + arraySize));
offset += arraySize;

b oelse {
socket. emit{"audic-stream” ,Buffer._alloc(@));
clearInterval (interval);

}. AUDIO_PACKET_SIZE_MS)

Sample code - Using promises

https://docs.ado-tech.com/uploads/images/gallery/2025-03/t17PoscIMT2fKtzz-66.png
https://emlo.cloud/documentation/sample-code-streamin-promises

'JQ
This exomple demonstrates real-time analysis (streaming) API.
0On a real-world situation, thot oudio will come from switchboard.

0On this exomple we read a file and stream is as it was an audio comming from the switchboard.

The amalysis algoritm uses 11825 somples per second, and 16 bits per sample, POM, therefore this is the recommencded
audio format.

In case a different somple-rate streamed, the docker convert the origimol format to 11825, and this process slows the analysis process by about 9 times.
i

const wavefile = reguire(“wavefile"};

const fs = require("fs");
const 1o = require("socket.io-client");

const FILE_PATH = "[FILE PATH]"
const AMALYSIS_SERYER_URL = “ws://localhost:2258%; /Y assuming the docker is rumning on the local host
const AUDIO_PACKET_SIZE MS = 3B@8; // 3B@ ms iz the remommended buffer size
streamFile(FILE_PATH, "json");
async function stressFile(filePath, coumt = 1, outputTyps} |
v Ty |

awoit sendFile(AMALYSIS_SERVER_URL, filePath, outputType);

} catch Cerr) {

console.error{err);
}
async function sendFilelanalysisServerlrl, inputFilePath, outputType = "json”) |

const wav = new wovefile WoweFile();
const buffer = owait fs.promises.recdFile(inputFilePath)

wav . fromBuf fer buffar;

¥ Tif (wav.fmt.bitsPerSample ¥ 2 != @) |
throw mew Error("inwvalid bitsPerSample®};

}

let socket = null;

v TViry {
socket = awoit connectianalysisServerUrl)

https://docs.ado-tech.com/uploads/images/gallery/2025-03/pZmJA57GIFO123Pn-67.png

v 'sucket.an{"uudiﬂ—annlysi5-errur'. {err) == {

throw err;

B
await hondshoke!socket, wav, outputType);
await sendSamples(socket, wav);
} catch (errd) {
throw err;
} finally {
socket? . disconnect(};

}
¥

function connect{url) {

¥ Treturn new Promise((resolve, reject) == [

A ¥ const socket = io.connectiurl, {
transports: [“websocket”]
| H
L T socket . on{"connect”, (3 == {
resolve(socket)
k;
L 'sucket.an{"cannect_errar": (err) == {
rejectierr);
| H
L H
}

function hondshoke!socket, wov, outputTypel |

¥ Treturn new Promize((resolve, reject) =» {

v ¥ const onHandshakeDone = r == |
socket. of f (“handshake-done™, onHandshakeDone ;
L Yif (r.success) {
resolvelr. data);
} else {
rejectinew Error(r?._error || “Unexpected error cccurred on handshake")7 ;

}

https://docs.ado-tech.com/uploads/images/gallery/2025-03/tg6kAKxDJ1ObbpZW-68.png

socket. on(“handshake-done”, onHandshakeDone ;

A ¥ socket_emit("hondshake", {
1isPOM: wav . fmt. oudicFormat === 1,
channels: wav._ fmt. numChannels,
bockgroundioise: 1888,
bitRate: wav.fmt bitsPerSample,
sampleRate: wav. fmt. sampleRate,
semsitivity: “normal”,
outputType
By
| 9 H

function fetchAnalysisReport{socket) {

¥ Treturn new Promise{(resclve, reject) == {

A ¥ const analysisReportReady = r == {
socket . of f{ "analysis-report-ready”, analysisReportReady’;
v Tif (r.success) {
console. log{J50N. stringify(rl);
resolvelr. data);
} else {
reject{new Error(r?_.errer || “"Unexpected error occurred on finalize®});
}
socket. disconnect();
s
socket.on("analysis-report-ready”, analysisReportReady);
A ¥ socket_emit("fetch-aonalysis-report®, {

£ return report on json formot

outputFoermat: "json”,

S true -» return on the report all the segments in the call.

f4 in that case, the result will be similar to an offline analysis
fetchSegments: true,

12 H

1);

https://docs.ado-tech.com/uploads/images/gallery/2025-03/oeWhxDcGyECMdKRW-69.png

function calcPacketSizeBytes(wav, audiolengthMs){
f# this functiom assumes bitsPerSample = 16 or 8 ==> the Z supported walues by the docker

const singleSampleTimeMS = 1888 / wav. fmt_sampleRate;
const singleSampleSizeBytes = wav. fmt bitsPerSample / 2 * wav_ fmt. numChannels;

£/ Heed to round to integer, os oudiolengthMs / singleSAmpleTimeMS most likely will not be an imteger
const requiredsomplesCount = Moth.roundfoudiclengthMs / singleSampleTimeMs’;

const pocketSizeBytes = requiredSamplesCount * singleSampleSizeBytes;

return packetSizeBytes;
¥
async function sendSomples{socket, wav)

let packetSize = calcPaocketSizeBytes{wav, AUDI0_PACKET_SIZE_MS);
let offset = @;

¥* ¥return new Promisel(resolwe, reject) =» {

v '5fucket.u::n-f"uudi.{:-—annl_‘..lsiﬁ-er'r'ur". arp =» |
#F The docker will send this in case of an error.
#F The err param will hold the error details

socket . disconnact(};
reject{err};

B
v ¥ socket.on('oudio-analysis', async (r) == {
L Tif (r.success) |
v ¥Yif (r.data.done} |
console. Log{J50N. stringify{r.data) + "“r\n");
}
- Yif {Ir.success) |
socket . disconnect();
reject{new Errorir.error));
}
B

¥ T socket. on('oudio-analysis-completed', async (r) == {

https://docs.ado-tech.com/uploads/images/gallery/2025-03/EHlMkwYdNPkWCBaD-70.png

L Yif (r.success) |
await fetchAnalysisReport{socket];
}):
v ¥ function send() {

let arraySize = (wav.daoto.somples bytelength - offset < packetSize)? wav.dota.samples bytelength - offset:packetSize;
const array = wov.daoto. samples. sliceloffset, offset + arraySize);

offset += arraySize;
socket emit("oudic-stream”, array);
v Tif [offset < waov. dato.somples.length && socket. connected) |
setTimeout{send, AUDIO_PACKET_SIZE_MS);
I else if{socket. connected)]
socket .emit("audio-stream", Buffer_alloc(@));
} else |

resolwvel);

b

send();

Emotion Logic docker supports integrations with 2 STT (Speech To Text) providers

e Deepgram
e Speechmatics

By setting your STT provider API Key, the Emotion Logic anlysis docker will sync its analysis to the
STT results.

When activating STT on the docker, each analysis sigment will contain the spoken text at the time
of the segment.

How to set STT provider APl Key

https://docs.ado-tech.com/uploads/images/gallery/2025-03/5JZVM5IMc4Pz3Tsd-71.png

1. Open the Docker dashboard and navigate to the “Integrations” tab.

2. If you do not have an account with one of the supported Speech-to-Text (STT) providers, please
visit:

* Deepgram

* Speechmatics

3. Create an API Key with your chosen STT provider.

https://deepgram.com/
https://www.speechmatics.com/

4. Enter the STT API Key in the appropriate field.
5. Save your changes.
6. Ensure that you include "useSpeechToText: true" in your analysis requests.

Release Notes: Version 7.32.1

New Features: « LOVE Values: Added all LOVE values to enhance the emotional analysis
capabilities.

Improvements: ¢« MostFanatic Function: Optimization of the MostFanatic function for better
performance and accuracy.

* Passion Detection: Modified the SAF value function to improve the detection of passion.

e Strengths and Challenges: Function updated to relate to averages as a baseline, providing
relative strengths and weaknesses. The function now includes “uneasy” and “arousal” metrics to
keep the assessment relative.

Bug Fixes: « Channel Similarity: Fixed a bug related to similarity calculations between channels.

Updates:

* Excitement and Uncertainty: Updated the functions for Excitement and Uncertainty to align with
new norms.

* BG Auto Test: Modified the BG auto test functionality. Tests are now disabled for segments
shorter than 5 seconds. Users should utilize FIX BG or STT for segmentation in such cases.

Release Notes for LVA7
Tech. 7.30.1

Version Update:

Optimization: Improved CallPriority scores and call classifications tailored for call center scenarios.
Bug Fix: Resolved issues with time pointer shifts in lengthy files.

Modification: Updated FeelGPT protocol terminology to clarify message meanings (changed
"Passion" to "arousal" and "passion peak" to "arousal peak").

Release Notes for LVA7
Tech. 7.29.3

We are excited to announce the release of LVA7, a significant update to our analytics platform. This
version introduces several enhancements and fixes aimed at improving accuracy, usability, and
comprehensiveness of risk assessments and personality insights. Here's what's new:

Enhancements:

Objective Risk Formula
Optimization:

1. We've fine-tuned the Objective (OZ) risk formulas to better incorporate inaccuracy indicators,
resulting in more nuanced risk assessments.

2. Users can expect a modest recalibration of risk scores, with a greater number of risk
indicators and inaccuracies now being flagged.

3. For those preferring the previous version's risk evaluation, the option to revert is available by
setting sensitivity: bwcl for backward compatibility.

Introduction of Final Risk Score:

A new "Final Risk" score has been added to the risk summaries, amalgamating objective and
subjective risk evaluations for a comprehensive overview.

When only one type of risk is assessed, the Final Risk score will reflect that singular assessment.

The calculation method for the Final Risk score in the Topics and Questions sections has been
updated for enhanced accuracy.

Personality Assessment
Enhancement: (In supported
applications)

The questionnaire APl now supports personality assessments at the question level.
Use isPersonality: true to designate a question for personality evaluation.
Use isPersonality: false to designate a question for risk assessment only.

Questions with a non-zero weight parameter will contribute to both personality and risk
assessments. Set weight: 0 to exclude a question from risk evaluation.

Important Update Regarding
IsSPersonality Setting:

To ensure a seamless transition and maintain backward compatibility, the isPersonality option will
default to True in the current release. Be aware that this behavior is slated for a future change. We
strongly recommend that users review and adjust their questionnaire settings accordingly to
ensure accurate core competencies values analysis. Remember, only questions explicitly marked
with isPersonality: true are factored into this analysis.

Bug Fixes:

Emotion Diamond Real-Time

Values Correction:

An issue affecting the real-time values displayed on Emotion Diamond for channel 1 has been

addressed, ensuring accurate emotional insight representation.

The old Nemesysco's cloud response and the new EmotionLogic response

Nemesysco's cloud response New Emotion-Logic response
"RISKREPT":[{
"Topicl;C0;6;90;95", "data": {
"Topic2;C0;6;95;100" "reports": {
1 "risk": {

"topics": [

{
"id": "questionl",

"averageJQ": 26,
"averageVoll": 892,
"averageVol2": 73,
"maxS0S": 103,
"riskObjective": 43,
"riskSubjective": 85,
"segmentsCount": 34

Remarks

The Topics Risk report is now more
detailed and contains more items.
The old response structure was:
Topic Name;Channel ID;,Segment
Count; Risk;Max SOS

Topic Name is now "_id"

"C0" - old Channel ID - this param was
dropped from the new version
Segment count maps to the new
segmentsCount

The old RISK maps to the new "
riskObjective" and uses the same
scale and values.

"SOS" maps to the new "maxS0OS"
and have the same meaning and
scales.

"RISKREPQ":[
"Topicl;Questionl;C0;1;22;75;10",
"Topicl;Question2;C0;1;12;93;20",
"Topic2;Question3;C0;2;84;100;30",
"Topic2;Question4;C0;2;55;92;40"

1,

"EDPREPT":[

"Leadership;Leading by
example;C0;1;25;1;38;1;20;13;83;100
;100;41",

"Leadership;Approach toward
difficulties;C0;1;19;1;31;1,60;25;68;6
7;100;57",

"Leadership;Leadership
skills;C0;2;25;1;23;1;32;22;81;100;10
0;60",

"Leadership;Influencing
others;C0;2;38;1;24;1;34;23;81,;68;98
;42"

I

"SEG":[
"TotalSeg#;Seg#;TOPIC;QUESTION;Ch
annel;StartPos;EndPos;OnlineLVA;Offli
nelLVA;
Risk1;Risk2;RiskO0Z;0Z21/0Z2/0Z3;Ene
rgy;Content;Upset;Angry;Stressed;CO
GlLevel;
EMOLevel;Concentration;Anticipation;
Hesitation;EmoBalance;IThink;Imagin;
SAF;0CA;
EmoCogRatio;ExtremeEmotion;CogHi
ghLowBalance;VoiceEnergy;LVARiskSt
ress;
LVAGLBStress;LVAEmoStress;LVACOG
Stress;LVAENRStress",
"SEG1;0001;Leadership;Leading by
example;C0;0.90;1.40;Calibrating... (-
2);<0OFFC01>;0;0;
145;4/3/1232;4;0;0;0;0;15;30;30;30;1
4;51;0;0;0;551;100;11;58;1356 /
66;0;0;0;0;0"

|

"reports": {

"risk": {
"questions": [
{
ll_idll: “tOpiCl",

"averageJQ": 26,
"averageVoll": 892,
"averageVol2": 73,
"maxS0S": 103,
"riskObjective": 43,
"riskSubjective": 85,
"segmentsCount": 34

Initializing Docker with Environment Variables

The Questions Risk report is now
more detailed and contains more
items.

The old repsonse structure was:
Topic Name;Question Id;Channel
ID;Segment Count; Risk;Max SOS
Question Name is now "_id"

"CO" - old Channel ID - this param was
dropped from the new version
Segment count maps to the new
segmentsCount

The old RISK maps to the new "
riskObjective" and uses the same
scale and values.

"SOS" maps to the new "maxSOS"
and have the same meaning and
scales.

Emotional Diamond data by question

Segments data by the selected
application structure

In scenarios where Docker containers need to be initialized automatically—such as when deployed
by Kubernetes—manual initiation through the Docker dashboard is not possible. Instead, the
container can be configured to initialize itself automatically by passing the necessary environment
variables.

Mandatory Environment Variables

To ensure proper authentication and functionality, the following environment variables must be
provided:

* PLATFORM_APIKEY - API key for emlo.cloud
* PLATFORM_APIKEY_PASSWORD - Password for the emlo.cloud API key

To run the container with these variables, use the following command:

docker run --rm -p 8080:8080 -p 2259:2259 \
-e "PLATFORM_APIKEY=test" \
-e "PLATFORM_APIKEY_PASSWORD=test" \

--Name nms-server nemesysco/on_premises

Optional Environment Variables

The following optional environment variables can be used to integrate with third-party services or
modify the container’s behavior:

* DEEPGRAM_URL - Base URL for the Deepgram Speech-to-Text (STT) API

* STT_KEY - API key for Deepgram’s STT service

* SPEECHMATICS_KEY - API key for Speechmatics STT API

* WHISPER_BASE_URL - Base URL for Whisper STT API

* DISABLE _UI - A flag to disable the Docker Ul. Assigning any value to this variable will disable the
ul.

By configuring these variables appropriately, the container can be tailored to meet specific
deployment needs.

https://deepgram.com/
http://speechmatics.com/

Revision #1
Created 12 March 2025 15:15:18 by mauricio olarte
Updated 12 March 2025 15:31:19 by mauricio olarte

